#include "CQuaternion.h" #include #include #include CQuaternion::CQuaternion() { w = 0.f; x = 0.f; y = 0.f; z = 0.f; } CQuaternion::CQuaternion(float _w, float _x, float _y, float _z) { w = _w; x = _x; y = _y; z = _z; } CVector3f CQuaternion::XAxis() { return (*this * CVector3f::skUnitX); } CVector3f CQuaternion::YAxis() { return (*this * CVector3f::skUnitY); } CVector3f CQuaternion::ZAxis() { return (*this * CVector3f::skUnitZ); } CQuaternion CQuaternion::Inverse() { float fNorm = (w * w) + (x * x) + (y * y) + (z * z); if (fNorm > 0.f) { float fInvNorm = 1.f / fNorm; return CQuaternion( w * fInvNorm, -x * fInvNorm, -y * fInvNorm, -z * fInvNorm); } else return CQuaternion::skZero; } CVector3f CQuaternion::ToEuler() { // There is more than one way to do this conversion, based on rotation order. // But since we only care about the rotation order used in Retro games, which is consistent, // we can just have a single conversion function. Handy! // https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles float ex = atan2f(2 * (w*x + y*z), 1 - (2 * (Math::Pow(x,2) + Math::Pow(y,2)))); float ey = asinf(2 * (w*y - z*x)); float ez = atan2f(2 * (w*z + x*y), 1 - (2 * (Math::Pow(y,2) + Math::Pow(z,2)))); return CVector3f(Math::RadiansToDegrees(ex), Math::RadiansToDegrees(ey), Math::RadiansToDegrees(ez)); } // ************ OPERATORS ************ CVector3f CQuaternion::operator*(const CVector3f& vec) const { CVector3f uv, uuv; CVector3f qvec(x, y, z); uv = qvec.Cross(vec); uuv = qvec.Cross(uv); uv *= (2.0f * w); uuv *= 2.0f; return vec + uv + uuv; } CQuaternion CQuaternion::operator*(const CQuaternion& other) const { CQuaternion out; out.w = (-x * other.x) - (y * other.y) - (z * other.z) + (w * other.w); out.x = ( x * other.w) + (y * other.z) - (z * other.y) + (w * other.x); out.y = (-x * other.z) + (y * other.w) + (z * other.x) + (w * other.y); out.z = ( x * other.y) - (y * other.x) + (z * other.w) + (w * other.z); return out; } void CQuaternion::operator *= (const CQuaternion& other) { *this = *this * other; } // ************ STATIC ************ CQuaternion CQuaternion::FromEuler(CVector3f euler) { /** * The commented-out code below might be faster but the conversion isn't completely correct * So in lieu of fixing it I'm using axis angles to convert from Eulers instead * I'm not sure what the difference is performance-wise but the result is 100% accurate */ /*CQuaternion quat; // Convert from degrees to radians float pi = 3.14159265358979323846f; euler = euler * pi / 180; // Convert to quaternion float c1 = cos(euler.x / 2); float c2 = cos(euler.y / 2); float c3 = cos(euler.z / 2); float s1 = sin(euler.x / 2); float s2 = sin(euler.y / 2); float s3 = sin(euler.z / 2); quat.w = (c1 * c2 * c3) - (s1 * s2 * s3); quat.x = -((s1 * c2 * c3) + (c1 * s2 * s3)); quat.y = ((c1 * s2 * c3) - (s1 * c2 * s3)); quat.z = ((s1 * s2 * c3) + (c1 * c2 * s3));*/ CQuaternion x = CQuaternion::FromAxisAngle(euler.x, CVector3f(1,0,0)); CQuaternion y = CQuaternion::FromAxisAngle(euler.y, CVector3f(0,1,0)); CQuaternion z = CQuaternion::FromAxisAngle(euler.z, CVector3f(0,0,1)); CQuaternion quat = z * y * x; return quat; } CQuaternion CQuaternion::FromAxisAngle(float angle, CVector3f axis) { CQuaternion quat; axis = axis.Normalized(); angle = Math::DegreesToRadians(angle); float sa = sinf(angle / 2); quat.w = cosf(angle / 2); quat.x = axis.x * sa; quat.y = axis.y * sa; quat.z = axis.z * sa; return quat; } CQuaternion CQuaternion::skIdentity = CQuaternion(1.f, 0.f, 0.f, 0.f); CQuaternion CQuaternion::skZero = CQuaternion(0.f, 0.f, 0.f, 0.f);