#include "amuse/SongConverter.hpp" #include #include #include #include #include "amuse/Common.hpp" #include "amuse/SongState.hpp" namespace amuse { constexpr uint8_t clamp7(uint8_t val) { return std::max(0, std::min(127, int(val))); } enum class Status { NoteOff = 0x80, NoteOn = 0x90, NotePressure = 0xA0, ControlChange = 0xB0, ProgramChange = 0xC0, ChannelPressure = 0xD0, PitchBend = 0xE0, SysEx = 0xF0, TimecodeQuarterFrame = 0xF1, SongPositionPointer = 0xF2, SongSelect = 0xF3, TuneRequest = 0xF6, SysExTerm = 0xF7, TimingClock = 0xF8, Start = 0xFA, Continue = 0xFB, Stop = 0xFC, ActiveSensing = 0xFE, Reset = 0xFF, }; /* Event tags */ struct NoteEvent {}; struct CtrlEvent {}; struct ProgEvent {}; struct PitchEvent {}; /* Intermediate event */ struct Event { enum class Type : uint8_t { Note, Control, Program, Pitch } m_type; bool endEvent = false; uint8_t channel; uint8_t noteOrCtrl; uint8_t velOrVal; uint8_t program; int length; int pitchBend; Event(NoteEvent, uint8_t chan, uint8_t note, uint8_t vel, int len) : m_type(Type::Note), channel(chan), noteOrCtrl(note), velOrVal(vel), length(len) {} Event(CtrlEvent, uint8_t chan, uint8_t note, uint8_t vel, int len) : m_type(Type::Control), channel(chan), noteOrCtrl(note), velOrVal(vel), length(len) {} Event(ProgEvent, uint8_t chan, uint8_t prog) : m_type(Type::Program), channel(chan), program(prog) {} Event(PitchEvent, uint8_t chan, int pBend) : m_type(Type::Pitch), channel(chan), pitchBend(pBend) {} }; class MIDIDecoder { int m_tick = 0; std::vector> m_results[16]; std::multimap m_tempos; std::array::iterator, 128> m_notes[16]; int m_minLoopStart[16]; int m_minLoopEnd[16]; bool isEmptyIterator(int chan, std::multimap::iterator it) const { for (const auto& res : m_results[chan]) if (res.end() == it) return true; return false; } void _addRegionChange(int chan) { auto& results = m_results[chan]; results.reserve(2); results.emplace_back(); if (results.size() == 1) for (size_t i = 0; i < 128; ++i) m_notes[chan][i] = results.back().end(); } uint8_t m_status = 0; bool _readContinuedValue(std::vector::const_iterator& it, std::vector::const_iterator end, uint32_t& valOut) { uint8_t a = *it++; valOut = a & 0x7f; if (a & 0x80) { if (it == end) return false; valOut <<= 7; a = *it++; valOut |= a & 0x7f; if (a & 0x80) { if (it == end) return false; valOut <<= 7; a = *it++; valOut |= a & 0x7f; } } return true; } public: MIDIDecoder() { std::fill(std::begin(m_minLoopStart), std::end(m_minLoopStart), INT_MAX); std::fill(std::begin(m_minLoopEnd), std::end(m_minLoopEnd), INT_MAX); } std::vector::const_iterator receiveBytes(std::vector::const_iterator begin, std::vector::const_iterator end, int loopStart[16] = nullptr, int loopEnd[16] = nullptr) { std::vector::const_iterator it = begin; while (it != end) { uint32_t deltaTime; _readContinuedValue(it, end, deltaTime); m_tick += deltaTime; uint8_t a = *it++; uint8_t b; if (a & 0x80) m_status = a; else it--; if (m_status == 0xff) { /* Meta events */ if (it == end) break; a = *it++; uint32_t length; _readContinuedValue(it, end, length); switch (a) { case 0x51: { uint32_t tempo = 0; memcpy(&reinterpret_cast(&tempo)[1], &*it, 3); m_tempos.emplace(m_tick, 60000000 / SBig(tempo)); [[fallthrough]]; } default: it += length; } } else { uint8_t chan = m_status & 0xf; auto& results = m_results[chan]; if (loopEnd && loopEnd[chan] != INT_MAX && m_tick >= loopEnd[chan]) break; /* Split region at loop start point */ if (loopStart && loopStart[chan] != INT_MAX && m_tick >= loopStart[chan]) { _addRegionChange(chan); loopStart[chan] = INT_MAX; } else if (results.empty()) { _addRegionChange(chan); } std::multimap& res = results.back(); switch (Status(m_status & 0xf0)) { case Status::NoteOff: { if (it == end) break; a = *it++; if (it == end) break; b = *it++; uint8_t notenum = clamp7(a); std::multimap::iterator note = m_notes[chan][notenum]; if (!isEmptyIterator(chan, note)) { note->second.length = m_tick - note->first; m_notes[chan][notenum] = res.end(); } break; } case Status::NoteOn: { if (it == end) break; a = *it++; if (it == end) break; b = *it++; uint8_t notenum = clamp7(a); uint8_t vel = clamp7(b); std::multimap::iterator note = m_notes[chan][notenum]; if (!isEmptyIterator(chan, note)) note->second.length = m_tick - note->first; if (vel != 0) m_notes[chan][notenum] = res.emplace(m_tick, Event{NoteEvent{}, chan, notenum, vel, 0}); else m_notes[chan][notenum] = res.end(); break; } case Status::NotePressure: { if (it == end) break; a = *it++; if (it == end) break; b = *it++; break; } case Status::ControlChange: { if (it == end) break; a = *it++; if (it == end) break; b = *it++; if (a == 0x66) m_minLoopStart[chan] = std::min(m_tick, m_minLoopStart[chan]); else if (a == 0x67) m_minLoopEnd[chan] = std::min(m_tick, m_minLoopEnd[chan]); else res.emplace(m_tick, Event{CtrlEvent{}, chan, clamp7(a), clamp7(b), 0}); break; } case Status::ProgramChange: { if (it == end) break; a = *it++; res.emplace(m_tick, Event{ProgEvent{}, chan, a}); break; } case Status::ChannelPressure: { if (it == end) break; a = *it++; break; } case Status::PitchBend: { if (it == end) break; a = *it++; if (it == end) break; b = *it++; res.emplace(m_tick, Event{PitchEvent{}, chan, clamp7(b) * 128 + clamp7(a)}); break; } case Status::SysEx: { switch (Status(m_status & 0xff)) { case Status::SysEx: { uint32_t len; if (!_readContinuedValue(it, end, len) || end - it < len) break; break; } case Status::TimecodeQuarterFrame: { if (it == end) break; a = *it++; break; } case Status::SongPositionPointer: { if (it == end) break; a = *it++; if (it == end) break; b = *it++; break; } case Status::SongSelect: { if (it == end) break; a = *it++; break; } case Status::TuneRequest: case Status::Start: case Status::Continue: case Status::Stop: case Status::Reset: case Status::SysExTerm: case Status::TimingClock: case Status::ActiveSensing: default: break; } break; } default: break; } } } return it; } std::vector>& getResults(int chan) { return m_results[chan]; } std::multimap& getTempos() { return m_tempos; } int getMinLoopStart(int chan) const { return m_minLoopStart[chan]; } int getMinLoopEnd(int chan) const { return m_minLoopEnd[chan]; } }; class MIDIEncoder { friend class SongConverter; std::vector m_result; uint8_t m_status = 0; void _sendMessage(const uint8_t* data, size_t len) { if (data[0] == m_status) { for (size_t i = 1; i < len; ++i) m_result.push_back(data[i]); } else { if (data[0] & 0x80) m_status = data[0]; for (size_t i = 0; i < len; ++i) m_result.push_back(data[i]); } } void _sendContinuedValue(uint32_t val) { uint8_t send[3] = {}; uint8_t* ptr = nullptr; if (val >= 0x4000) { ptr = &send[0]; send[0] = 0x80 | ((val / 0x4000) & 0x7f); send[1] = 0x80; val &= 0x3fff; } if (val >= 0x80) { if (!ptr) ptr = &send[1]; send[1] = 0x80 | ((val / 0x80) & 0x7f); } if (!ptr) ptr = &send[2]; send[2] = val & 0x7f; size_t len = 3 - (ptr - send); for (size_t i = 0; i < len; ++i) m_result.push_back(ptr[i]); } public: void noteOff(uint8_t chan, uint8_t key, uint8_t velocity) { uint8_t cmd[3] = {uint8_t(int(Status::NoteOff) | (chan & 0xf)), uint8_t(key & 0x7f), uint8_t(velocity & 0x7f)}; _sendMessage(cmd, 3); } void noteOn(uint8_t chan, uint8_t key, uint8_t velocity) { uint8_t cmd[3] = {uint8_t(int(Status::NoteOn) | (chan & 0xf)), uint8_t(key & 0x7f), uint8_t(velocity & 0x7f)}; _sendMessage(cmd, 3); } void notePressure(uint8_t chan, uint8_t key, uint8_t pressure) { uint8_t cmd[3] = {uint8_t(int(Status::NotePressure) | (chan & 0xf)), uint8_t(key & 0x7f), uint8_t(pressure & 0x7f)}; _sendMessage(cmd, 3); } void controlChange(uint8_t chan, uint8_t control, uint8_t value) { uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), uint8_t(control & 0x7f), uint8_t(value & 0x7f)}; _sendMessage(cmd, 3); } void programChange(uint8_t chan, uint8_t program) { uint8_t cmd[2] = {uint8_t(int(Status::ProgramChange) | (chan & 0xf)), uint8_t(program & 0x7f)}; _sendMessage(cmd, 2); } void channelPressure(uint8_t chan, uint8_t pressure) { uint8_t cmd[2] = {uint8_t(int(Status::ChannelPressure) | (chan & 0xf)), uint8_t(pressure & 0x7f)}; _sendMessage(cmd, 2); } void pitchBend(uint8_t chan, int16_t pitch) { uint8_t cmd[3] = {uint8_t(int(Status::PitchBend) | (chan & 0xf)), uint8_t((pitch % 128) & 0x7f), uint8_t((pitch / 128) & 0x7f)}; _sendMessage(cmd, 3); } void allSoundOff(uint8_t chan) { uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), 120, 0}; _sendMessage(cmd, 3); } void resetAllControllers(uint8_t chan) { uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), 121, 0}; _sendMessage(cmd, 3); } void localControl(uint8_t chan, bool on) { uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), 122, uint8_t(on ? 127 : 0)}; _sendMessage(cmd, 3); } void allNotesOff(uint8_t chan) { uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), 123, 0}; _sendMessage(cmd, 3); } void omniMode(uint8_t chan, bool on) { uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), uint8_t(on ? 125 : 124), 0}; _sendMessage(cmd, 3); } void polyMode(uint8_t chan, bool on) { uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), uint8_t(on ? 127 : 126), 0}; _sendMessage(cmd, 3); } void sysex(const void* data, size_t len) { uint8_t cmd = uint8_t(Status::SysEx); _sendMessage(&cmd, 1); _sendContinuedValue(len); for (size_t i = 0; i < len; ++i) m_result.push_back(reinterpret_cast(data)[i]); cmd = uint8_t(Status::SysExTerm); _sendMessage(&cmd, 1); } void timeCodeQuarterFrame(uint8_t message, uint8_t value) { uint8_t cmd[2] = {uint8_t(int(Status::TimecodeQuarterFrame)), uint8_t((message & 0x7 << 4) | (value & 0xf))}; _sendMessage(cmd, 2); } void songPositionPointer(uint16_t pointer) { uint8_t cmd[3] = {uint8_t(int(Status::SongPositionPointer)), uint8_t((pointer % 128) & 0x7f), uint8_t((pointer / 128) & 0x7f)}; _sendMessage(cmd, 3); } void songSelect(uint8_t song) { uint8_t cmd[2] = {uint8_t(int(Status::TimecodeQuarterFrame)), uint8_t(song & 0x7f)}; _sendMessage(cmd, 2); } void tuneRequest() { uint8_t cmd = uint8_t(Status::TuneRequest); _sendMessage(&cmd, 1); } void startSeq() { uint8_t cmd = uint8_t(Status::Start); _sendMessage(&cmd, 1); } void continueSeq() { uint8_t cmd = uint8_t(Status::Continue); _sendMessage(&cmd, 1); } void stopSeq() { uint8_t cmd = uint8_t(Status::Stop); _sendMessage(&cmd, 1); } void reset() { uint8_t cmd = uint8_t(Status::Reset); _sendMessage(&cmd, 1); } const std::vector& getResult() const { return m_result; } std::vector& getResult() { return m_result; } }; static uint16_t DecodeUnsignedValue(const unsigned char*& data) { uint16_t ret; if (data[0] & 0x80) { ret = data[1] | ((data[0] & 0x7f) << 8); data += 2; } else { ret = data[0]; data += 1; } return ret; } static void EncodeUnsignedValue(std::vector& vecOut, uint16_t val) { if (val >= 128) { vecOut.push_back(0x80 | ((val >> 8) & 0x7f)); vecOut.push_back(val & 0xff); } else { vecOut.push_back(val & 0x7f); } } static int16_t DecodeSignedValue(const unsigned char*& data) { int16_t ret; if (data[0] & 0x80) { ret = data[1] | ((data[0] & 0x7f) << 8); ret |= ((ret << 1) & 0x8000); data += 2; } else { ret = int8_t(data[0] | ((data[0] << 1) & 0x80)); data += 1; } return ret; } static void EncodeSignedValue(std::vector& vecOut, int16_t val) { if (val >= 64 || val < -64) { vecOut.push_back(0x80 | ((val >> 8) & 0x7f)); vecOut.push_back(val & 0xff); } else { vecOut.push_back(val & 0x7f); } } static std::pair DecodeDelta(const unsigned char*& data) { std::pair ret = {}; do { if (data[0] == 0x80 && data[1] == 0x00) break; ret.first += DecodeUnsignedValue(data); ret.second = DecodeSignedValue(data); } while (ret.second == 0); return ret; } static void EncodeDelta(std::vector& vecOut, uint32_t deltaTime, int32_t val) { while (deltaTime > 32767) { EncodeUnsignedValue(vecOut, 32767); EncodeSignedValue(vecOut, 0); deltaTime -= 32767; } EncodeUnsignedValue(vecOut, deltaTime); EncodeSignedValue(vecOut, val); } static uint32_t DecodeTime(const unsigned char*& data) { uint32_t ret = 0; while (true) { uint16_t thisPart = SBig(*reinterpret_cast(data)); uint16_t nextPart = *reinterpret_cast(data + 2); if (nextPart == 0) { // Automatically consume no-op command as continued time ret += thisPart; data += 4; continue; } ret += thisPart; data += 2; break; } return ret; } static void EncodeTime(std::vector& vecOut, uint32_t val) { while (val >= 65535) { // Automatically emit no-op command as continued time vecOut.push_back(0xff); vecOut.push_back(0xff); vecOut.push_back(0); vecOut.push_back(0); val -= 65535; } uint16_t lastPart = SBig(uint16_t(val)); vecOut.push_back(reinterpret_cast(&lastPart)[0]); vecOut.push_back(reinterpret_cast(&lastPart)[1]); } std::vector SongConverter::SongToMIDI(const unsigned char* data, int& versionOut, bool& isBig) { std::vector ret = {'M', 'T', 'h', 'd'}; uint32_t six32 = SBig(uint32_t(6)); for (int i = 0; i < 4; ++i) ret.push_back(reinterpret_cast(&six32)[i]); ret.push_back(0); ret.push_back(1); SongState song; if (!song.initialize(data, false)) return {}; versionOut = song.m_sngVersion; isBig = song.m_bigEndian; size_t trkCount = 1; for (SongState::Track& trk : song.m_tracks) if (trk) ++trkCount; uint16_t trkCount16 = SBig(uint16_t(trkCount)); ret.push_back(reinterpret_cast(&trkCount16)[0]); ret.push_back(reinterpret_cast(&trkCount16)[1]); uint16_t tickDiv16 = SBig(uint16_t(384)); ret.push_back(reinterpret_cast(&tickDiv16)[0]); ret.push_back(reinterpret_cast(&tickDiv16)[1]); /* Write tempo track */ { MIDIEncoder encoder; /* Initial tempo */ encoder._sendContinuedValue(0); encoder.getResult().push_back(0xff); encoder.getResult().push_back(0x51); encoder.getResult().push_back(3); const uint32_t initialTempo24 = SBig(60000000 / (song.m_header.m_initialTempo & 0x7fffffff)); for (size_t i = 1; i < 4; ++i) { encoder.getResult().push_back(reinterpret_cast(&initialTempo24)[i]); } /* Write out tempo changes */ int lastTick = 0; const SongState::TempoChange* tempoPtr = nullptr; if (song.m_header.m_tempoTableOff) tempoPtr = reinterpret_cast(song.m_songData + song.m_header.m_tempoTableOff); while (tempoPtr && tempoPtr->m_tick != 0xffffffff) { SongState::TempoChange change = *tempoPtr; if (song.m_bigEndian) change.swapBig(); encoder._sendContinuedValue(change.m_tick - lastTick); lastTick = change.m_tick; encoder.getResult().push_back(0xff); encoder.getResult().push_back(0x51); encoder.getResult().push_back(3); const uint32_t tempo24 = SBig(60000000 / (change.m_tempo & 0x7fffffff)); for (size_t i = 1; i < 4; ++i) { encoder.getResult().push_back(reinterpret_cast(&tempo24)[i]); } ++tempoPtr; } encoder.getResult().push_back(0); encoder.getResult().push_back(0xff); encoder.getResult().push_back(0x2f); encoder.getResult().push_back(0); ret.push_back('M'); ret.push_back('T'); ret.push_back('r'); ret.push_back('k'); uint32_t trkSz = SBig(uint32_t(encoder.getResult().size())); for (int i = 0; i < 4; ++i) ret.push_back(reinterpret_cast(&trkSz)[i]); ret.insert(ret.cend(), encoder.getResult().begin(), encoder.getResult().end()); } bool loopsAdded = false; /* Iterate each SNG track into type-1 MIDI track */ for (SongState::Track& trk : song.m_tracks) { if (trk) { MIDIEncoder encoder; std::multimap allEvents; /* Iterate all regions */ while (trk.m_nextRegion->indexValid(song.m_bigEndian)) { std::multimap events; trk.advanceRegion(); uint32_t regStart = song.m_bigEndian ? SBig(trk.m_curRegion->m_startTick) : trk.m_curRegion->m_startTick; /* Initial program change */ if (trk.m_curRegion->m_progNum != 0xff) events.emplace(regStart, Event{ProgEvent{}, trk.m_midiChan, trk.m_curRegion->m_progNum}); /* Update continuous pitch data */ if (trk.m_pitchWheelData) { while (true) { /* Update pitch */ trk.m_pitchVal += trk.m_nextPitchDelta; events.emplace(regStart + trk.m_nextPitchTick, Event{PitchEvent{}, trk.m_midiChan, std::clamp(trk.m_pitchVal + 0x2000, 0, 0x4000)}); if (trk.m_pitchWheelData[0] != 0x80 || trk.m_pitchWheelData[1] != 0x00) { auto delta = DecodeDelta(trk.m_pitchWheelData); trk.m_nextPitchTick += delta.first; trk.m_nextPitchDelta = delta.second; } else { break; } } } /* Update continuous modulation data */ if (trk.m_modWheelData) { while (true) { /* Update modulation */ trk.m_modVal += trk.m_nextModDelta; events.emplace(regStart + trk.m_nextModTick, Event{CtrlEvent{}, trk.m_midiChan, 1, uint8_t(std::clamp(trk.m_modVal / 128, 0, 127)), 0}); if (trk.m_modWheelData[0] != 0x80 || trk.m_modWheelData[1] != 0x00) { auto delta = DecodeDelta(trk.m_modWheelData); trk.m_nextModTick += delta.first; trk.m_nextModDelta = delta.second; } else { break; } } } /* Loop through as many commands as we can for this time period */ if (song.m_sngVersion == 1) { /* Revision */ while (true) { /* Load next command */ if (*reinterpret_cast(trk.m_data) == 0xffff) { /* End of channel */ trk.m_data = nullptr; break; } else if (trk.m_data[0] & 0x80 && trk.m_data[1] & 0x80) { /* Control change */ uint8_t val = trk.m_data[0] & 0x7f; uint8_t ctrl = trk.m_data[1] & 0x7f; events.emplace(regStart + trk.m_eventWaitCountdown, Event{CtrlEvent{}, trk.m_midiChan, ctrl, val, 0}); trk.m_data += 2; } else if (trk.m_data[0] & 0x80) { /* Program change */ uint8_t prog = trk.m_data[0] & 0x7f; events.emplace(regStart + trk.m_eventWaitCountdown, Event{ProgEvent{}, trk.m_midiChan, prog}); trk.m_data += 2; } else { /* Note */ uint8_t note = trk.m_data[0] & 0x7f; uint8_t vel = trk.m_data[1] & 0x7f; uint16_t length = (song.m_bigEndian ? SBig(*reinterpret_cast(trk.m_data + 2)) : *reinterpret_cast(trk.m_data + 2)); events.emplace(regStart + trk.m_eventWaitCountdown, Event{NoteEvent{}, trk.m_midiChan, note, vel, length}); trk.m_data += 4; } /* Set next delta-time */ trk.m_eventWaitCountdown += int32_t(DecodeTime(trk.m_data)); } } else { /* Legacy */ while (true) { /* Load next command */ if (*reinterpret_cast(&trk.m_data[2]) == 0xffff) { /* End of channel */ trk.m_data = nullptr; break; } else { if ((trk.m_data[2] & 0x80) != 0x80) { /* Note */ uint16_t length = (song.m_bigEndian ? SBig(*reinterpret_cast(trk.m_data)) : *reinterpret_cast(trk.m_data)); uint8_t note = trk.m_data[2] & 0x7f; uint8_t vel = trk.m_data[3] & 0x7f; events.emplace(regStart + trk.m_eventWaitCountdown, Event{NoteEvent{}, trk.m_midiChan, note, vel, length}); } else if (trk.m_data[2] & 0x80 && trk.m_data[3] & 0x80) { /* Control change */ uint8_t val = trk.m_data[2] & 0x7f; uint8_t ctrl = trk.m_data[3] & 0x7f; events.emplace(regStart + trk.m_eventWaitCountdown, Event{CtrlEvent{}, trk.m_midiChan, ctrl, val, 0}); } else if (trk.m_data[2] & 0x80) { /* Program change */ uint8_t prog = trk.m_data[2] & 0x7f; events.emplace(regStart + trk.m_eventWaitCountdown, Event{ProgEvent{}, trk.m_midiChan, prog}); } trk.m_data += 4; } /* Set next delta-time */ int32_t absTick = (song.m_bigEndian ? SBig(*reinterpret_cast(trk.m_data)) : *reinterpret_cast(trk.m_data)); trk.m_eventWaitCountdown += absTick - trk.m_lastN64EventTick; trk.m_lastN64EventTick = absTick; trk.m_data += 4; } } /* Merge events */ allEvents.insert(events.begin(), events.end()); /* Resolve key-off events */ for (auto& pair : events) { if (pair.second.m_type == Event::Type::Note) { auto it = allEvents.emplace(pair.first + pair.second.length, pair.second); it->second.endEvent = true; } } } /* Add loop events */ if (!loopsAdded && trk.m_nextRegion->indexLoop(song.m_bigEndian) != -1) { uint32_t loopEnd = song.m_bigEndian ? SBig(trk.m_nextRegion->m_startTick) : trk.m_nextRegion->m_startTick; allEvents.emplace(trk.m_loopStartTick, Event{CtrlEvent{}, trk.m_midiChan, 0x66, 0, 0}); allEvents.emplace(loopEnd, Event{CtrlEvent{}, trk.m_midiChan, 0x67, 0, 0}); if (!(song.m_header.m_initialTempo & 0x80000000)) loopsAdded = true; } /* Emit MIDI events */ int lastTime = 0; for (auto& pair : allEvents) { encoder._sendContinuedValue(pair.first - lastTime); lastTime = pair.first; switch (pair.second.m_type) { case Event::Type::Control: encoder.controlChange(pair.second.channel, pair.second.noteOrCtrl, pair.second.velOrVal); break; case Event::Type::Program: encoder.programChange(trk.m_midiChan, pair.second.program); break; case Event::Type::Pitch: encoder.pitchBend(trk.m_midiChan, pair.second.pitchBend); break; case Event::Type::Note: if (pair.second.endEvent) encoder.noteOff(pair.second.channel, pair.second.noteOrCtrl, pair.second.velOrVal); else encoder.noteOn(pair.second.channel, pair.second.noteOrCtrl, pair.second.velOrVal); break; } } encoder.getResult().push_back(0); encoder.getResult().push_back(0xff); encoder.getResult().push_back(0x2f); encoder.getResult().push_back(0); /* Write out */ ret.push_back('M'); ret.push_back('T'); ret.push_back('r'); ret.push_back('k'); uint32_t trkSz = SBig(uint32_t(encoder.getResult().size())); for (int i = 0; i < 4; ++i) ret.push_back(reinterpret_cast(&trkSz)[i]); ret.insert(ret.cend(), encoder.getResult().begin(), encoder.getResult().end()); } } return ret; } std::vector SongConverter::MIDIToSong(const std::vector& data, int version, bool big) { std::vector ret; std::vector::const_iterator it = data.cbegin(); struct MIDIHeader { char magic[4]; uint32_t length; uint16_t type; uint16_t count; uint16_t div; void swapBig() { length = SBig(length); type = SBig(type); count = SBig(count); div = SBig(div); } }; MIDIHeader header = *reinterpret_cast(&*it); header.swapBig(); it += 8 + header.length; if (memcmp(header.magic, "MThd", 4)) return {}; /* Only Type 0 and 1 MIDI files supported as input */ if (header.type == 0) header.count = 1; else if (header.type != 1) return {}; std::vector trackRegionIdxArr; std::vector regionDataIdxArr; std::vector regionBuf; uint32_t initTempo = 120; std::vector> tempoBuf; std::array chanMap; for (int i = 0; i < 64; ++i) chanMap[i] = 0xff; struct Region { std::vector eventBuf; std::vector pitchBuf; std::vector modBuf; int padding = 0; bool operator==(const Region& other) const { if (eventBuf.size() != other.eventBuf.size()) return false; if (pitchBuf.size() != other.pitchBuf.size()) return false; if (modBuf.size() != other.modBuf.size()) return false; if (eventBuf.size() && memcmp(eventBuf.data(), other.eventBuf.data(), eventBuf.size())) return false; if (pitchBuf.size() && memcmp(pitchBuf.data(), other.pitchBuf.data(), pitchBuf.size())) return false; if (modBuf.size() && memcmp(modBuf.data(), other.modBuf.data(), modBuf.size())) return false; return true; } }; std::vector regions; int curRegionOff = 0; /* Pre-iterate to extract loop events */ int loopStart[16]; int loopEnd[16]; int loopChanCount = 0; { int loopChanIdx = -1; for (int c = 0; c < 16; ++c) { loopStart[c] = INT_MAX; loopEnd[c] = INT_MAX; std::vector::const_iterator tmpIt = it; for (int i = 0; i < header.count; ++i) { if (memcmp(&*tmpIt, "MTrk", 4)) return {}; tmpIt += 4; uint32_t length = SBig(*reinterpret_cast(&*tmpIt)); tmpIt += 4; std::vector::const_iterator begin = tmpIt; std::vector::const_iterator end = tmpIt + length; tmpIt = end; MIDIDecoder dec; dec.receiveBytes(begin, end); loopStart[c] = std::min(dec.getMinLoopStart(c), loopStart[c]); loopEnd[c] = std::min(dec.getMinLoopEnd(c), loopEnd[c]); } if (loopStart[c] == INT_MAX || loopEnd[c] == INT_MAX) { loopStart[c] = INT_MAX; loopEnd[c] = INT_MAX; } else { ++loopChanCount; loopChanIdx = c; } } if (loopChanCount == 1) { for (int c = 0; c < 16; ++c) { loopStart[c] = loopStart[loopChanIdx]; loopEnd[c] = loopEnd[loopChanIdx]; } } } for (int i = 0; i < header.count; ++i) { if (memcmp(&*it, "MTrk", 4)) return {}; it += 4; uint32_t length = SBig(*reinterpret_cast(&*it)); it += 4; if (i == 0) { /* Extract tempo events from first track */ std::vector::const_iterator begin = it; std::vector::const_iterator end = it + length; MIDIDecoder dec; dec.receiveBytes(begin, end); std::multimap& tempos = dec.getTempos(); if (tempos.size() == 1) initTempo = tempos.begin()->second; else if (tempos.size() > 1) { auto iter = tempos.begin(); initTempo = iter->second; ++iter; for (auto& pair : tempos) { if (big) tempoBuf.emplace_back(SBig(uint32_t(pair.first * 384 / header.div)), SBig(uint32_t(pair.second))); else tempoBuf.emplace_back(pair.first * 384 / header.div, pair.second); } } if (header.type == 1) { it = end; continue; } } /* Extract channel events */ std::vector::const_iterator begin = it; std::vector::const_iterator end = it + length; it = end; MIDIDecoder dec; int tmpLoopStart[16]; int tmpLoopEnd[16]; std::copy(std::begin(loopStart), std::end(loopStart), std::begin(tmpLoopStart)); std::copy(std::begin(loopEnd), std::end(loopEnd), std::begin(tmpLoopEnd)); dec.receiveBytes(begin, end, tmpLoopStart, tmpLoopEnd); for (int c = 0; c < 16; ++c) { std::vector>& results = dec.getResults(c); bool didChanInit = false; int lastEventTick = 0; for (auto& chanRegion : results) { bool didInit = false; int startTick = 0; lastEventTick = 0; int lastPitchTick = 0; int lastPitchVal = 0; int lastModTick = 0; int lastModVal = 0; Region region; for (auto& event : chanRegion) { uint32_t eventTick = event.first * 384 / header.div; if (event.second.channel == c) { if (!didInit) { didInit = true; startTick = eventTick; lastEventTick = startTick; lastPitchTick = startTick; lastPitchVal = 0; lastModTick = startTick; lastModVal = 0; } switch (event.second.m_type) { case Event::Type::Control: { if (event.second.noteOrCtrl == 1) { int newMod = event.second.velOrVal * 128; EncodeDelta(region.modBuf, eventTick - lastModTick, newMod - lastModVal); lastModTick = eventTick; lastModVal = newMod; } else { if (version == 1) { EncodeTime(region.eventBuf, uint32_t(eventTick - lastEventTick)); lastEventTick = eventTick; region.eventBuf.push_back(0x80 | event.second.velOrVal); region.eventBuf.push_back(0x80 | event.second.noteOrCtrl); } else { if (big) { const uint32_t tickBig = SBig(uint32_t(eventTick - startTick)); for (size_t j = 0; j < 4; ++j) { region.eventBuf.push_back(reinterpret_cast(&tickBig)[j]); } region.eventBuf.push_back(0x80 | event.second.velOrVal); region.eventBuf.push_back(0x80 | event.second.noteOrCtrl); } else { const uint32_t tick = uint32_t(eventTick - startTick); for (size_t j = 0; j < 4; ++j) { region.eventBuf.push_back(reinterpret_cast(&tick)[j]); } region.eventBuf.push_back(0x80 | event.second.velOrVal); region.eventBuf.push_back(0x80 | event.second.noteOrCtrl); } } } break; } case Event::Type::Program: { if (version == 1) { EncodeTime(region.eventBuf, uint32_t(eventTick - lastEventTick)); lastEventTick = eventTick; region.eventBuf.push_back(0x80 | event.second.program); region.eventBuf.push_back(0); } else { if (big) { const uint32_t tickBig = SBig(uint32_t(eventTick - startTick)); for (size_t j = 0; j < 4; ++j) { region.eventBuf.push_back(reinterpret_cast(&tickBig)[j]); } region.eventBuf.push_back(0x80 | event.second.program); region.eventBuf.push_back(0); } else { const uint32_t tick = uint32_t(eventTick - startTick); for (size_t j = 0; j < 4; ++j) { region.eventBuf.push_back(reinterpret_cast(&tick)[j]); } region.eventBuf.push_back(0x80 | event.second.program); region.eventBuf.push_back(0); } } break; } case Event::Type::Pitch: { int newPitch = event.second.pitchBend - 0x2000; EncodeDelta(region.pitchBuf, eventTick - lastPitchTick, newPitch - lastPitchVal); lastPitchTick = eventTick; lastPitchVal = newPitch; break; } case Event::Type::Note: { int lenTicks = event.second.length * 384 / header.div; if (version == 1) { EncodeTime(region.eventBuf, uint32_t(eventTick - lastEventTick)); lastEventTick = eventTick; region.eventBuf.push_back(event.second.noteOrCtrl); region.eventBuf.push_back(event.second.velOrVal); const uint16_t lenBig = SBig(uint16_t(lenTicks)); region.eventBuf.push_back(reinterpret_cast(&lenBig)[0]); region.eventBuf.push_back(reinterpret_cast(&lenBig)[1]); } else { if (big) { const uint32_t tickBig = SBig(uint32_t(eventTick - startTick)); for (size_t j = 0; j < 4; ++j) { region.eventBuf.push_back(reinterpret_cast(&tickBig)[j]); } const uint16_t lenBig = SBig(uint16_t(lenTicks)); region.eventBuf.push_back(reinterpret_cast(&lenBig)[0]); region.eventBuf.push_back(reinterpret_cast(&lenBig)[1]); region.eventBuf.push_back(event.second.noteOrCtrl); region.eventBuf.push_back(event.second.velOrVal); } else { const uint32_t tick = uint32_t(eventTick - startTick); for (size_t j = 0; j < 4; ++j) { region.eventBuf.push_back(reinterpret_cast(&tick)[j]); } const uint16_t len = uint16_t(lenTicks); region.eventBuf.push_back(reinterpret_cast(&len)[0]); region.eventBuf.push_back(reinterpret_cast(&len)[1]); region.eventBuf.push_back(event.second.noteOrCtrl); region.eventBuf.push_back(event.second.velOrVal); } } break; } } } } if (didInit) { if (!didChanInit) { didChanInit = true; if (trackRegionIdxArr.size() == 64) return {}; chanMap[trackRegionIdxArr.size()] = c; trackRegionIdxArr.push_back(regionBuf.size()); } /* Terminate region */ if (version == 1) { size_t pitchDelta = 0; size_t modDelta = 0; if (lastPitchTick > lastEventTick) pitchDelta = lastPitchTick - lastEventTick; if (lastModTick > lastEventTick) modDelta = lastModTick - lastEventTick; EncodeTime(region.eventBuf, std::max(pitchDelta, modDelta)); region.eventBuf.push_back(0xff); region.eventBuf.push_back(0xff); } else { if (big) { const uint32_t selTick = std::max(std::max(lastEventTick - startTick, lastPitchTick - startTick), lastModTick - startTick); const uint32_t tickBig = SBig(uint32_t(selTick)); for (size_t j = 0; j < 4; ++j) { region.eventBuf.push_back(reinterpret_cast(&tickBig)[j]); } region.eventBuf.push_back(0); region.eventBuf.push_back(0); region.eventBuf.push_back(0xff); region.eventBuf.push_back(0xff); } else { const uint32_t selTick = std::max(std::max(lastEventTick - startTick, lastPitchTick - startTick), lastModTick - startTick); const uint32_t tick = uint32_t(selTick); for (size_t j = 0; j < 4; ++j) { region.eventBuf.push_back(reinterpret_cast(&tick)[j]); } region.eventBuf.push_back(0); region.eventBuf.push_back(0); region.eventBuf.push_back(0xff); region.eventBuf.push_back(0xff); } } if (region.pitchBuf.size()) { region.pitchBuf.push_back(0x80); region.pitchBuf.push_back(0); } if (region.modBuf.size()) { region.modBuf.push_back(0x80); region.modBuf.push_back(0); } /* See if there's a matching region buffer already present */ size_t regIdx = 0; for (Region& reg : regions) { if (reg == region) break; ++regIdx; } if (regIdx == regions.size()) { regionDataIdxArr.push_back(curRegionOff); curRegionOff += 12 + region.eventBuf.size() + region.pitchBuf.size() + region.modBuf.size(); int paddedRegOff = ((curRegionOff + 3) & ~3); region.padding = paddedRegOff - curRegionOff; curRegionOff = paddedRegOff; regions.push_back(std::move(region)); } /* Region header */ regionBuf.emplace_back(); SongState::TrackRegion& reg = regionBuf.back(); if (big) { reg.m_startTick = SBig(uint32_t(startTick)); reg.m_progNum = 0xff; reg.m_unk1 = 0xff; reg.m_unk2 = 0; reg.m_regionIndex = SBig(uint16_t(regIdx)); reg.m_loopToRegion = 0; } else { reg.m_startTick = uint32_t(startTick); reg.m_progNum = 0xff; reg.m_unk1 = 0xff; reg.m_unk2 = 0; reg.m_regionIndex = uint16_t(regIdx); reg.m_loopToRegion = 0; } } } if (didChanInit) { /* Terminating region header */ regionBuf.emplace_back(); SongState::TrackRegion& reg = regionBuf.back(); uint32_t termStartTick = 0; int16_t termRegionIdx = -1; int16_t termLoopToRegion = 0; if (loopEnd[c] != INT_MAX) { termStartTick = loopEnd[c]; if (lastEventTick >= loopStart[c]) { termRegionIdx = -2; termLoopToRegion = results.size() - 1; } } if (big) { reg.m_startTick = SBig(termStartTick); reg.m_progNum = 0xff; reg.m_unk1 = 0xff; reg.m_unk2 = 0; reg.m_regionIndex = SBig(termRegionIdx); reg.m_loopToRegion = SBig(termLoopToRegion); } else { reg.m_startTick = termStartTick; reg.m_progNum = 0xff; reg.m_unk1 = 0xff; reg.m_unk2 = 0; reg.m_regionIndex = termRegionIdx; reg.m_loopToRegion = termLoopToRegion; } } } } if (version == 1) { SongState::Header head; head.m_initialTempo = initTempo; head.m_loopStartTicks[0] = 0; if (loopChanCount == 1) { head.m_loopStartTicks[0] = loopStart[0] == INT_MAX ? 0 : loopStart[0]; } else if (loopChanCount > 1) { for (int i = 0; i < 16; ++i) head.m_loopStartTicks[i] = loopStart[i] == INT_MAX ? 0 : loopStart[i]; head.m_initialTempo |= 0x80000000; } size_t headSz = (head.m_initialTempo & 0x80000000) ? 0x58 : 0x18; head.m_trackIdxOff = headSz; head.m_regionIdxOff = headSz + 4 * 64 + regionBuf.size() * 12; head.m_chanMapOff = head.m_regionIdxOff + 4 * regionDataIdxArr.size() + curRegionOff; head.m_tempoTableOff = tempoBuf.size() ? head.m_chanMapOff + 64 : 0; head.m_chanMapOff2 = head.m_chanMapOff; uint32_t regIdxOff = head.m_regionIdxOff; if (big) head.swapToBig(); *reinterpret_cast(&*ret.insert(ret.cend(), headSz, 0)) = head; for (size_t i = 0; i < 64; ++i) { if (i >= trackRegionIdxArr.size()) { ret.insert(ret.cend(), 4, 0); continue; } uint32_t idx = trackRegionIdxArr[i]; *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = big ? SBig(uint32_t(headSz + 4 * 64 + idx * 12)) : uint32_t(headSz + 4 * 64 + idx * 12); } for (SongState::TrackRegion& reg : regionBuf) *reinterpret_cast(&*ret.insert(ret.cend(), 12, 0)) = reg; uint32_t regBase = regIdxOff + 4 * regionDataIdxArr.size(); for (uint32_t regOff : regionDataIdxArr) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = big ? SBig(uint32_t(regBase + regOff)) : uint32_t(regBase + regOff); uint32_t curOffset = regBase; for (Region& reg : regions) { *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = big ? SBig(uint32_t(8)) : 8; if (reg.pitchBuf.size()) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = big ? SBig(uint32_t(curOffset + 12 + reg.eventBuf.size())) : uint32_t(curOffset + 12 + reg.eventBuf.size()); else ret.insert(ret.cend(), 4, 0); if (reg.modBuf.size()) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = big ? SBig(uint32_t(curOffset + 12 + reg.eventBuf.size() + reg.pitchBuf.size())) : uint32_t(curOffset + 12 + reg.eventBuf.size() + reg.pitchBuf.size()); else ret.insert(ret.cend(), 4, 0); if (reg.eventBuf.size()) memmove(&*ret.insert(ret.cend(), reg.eventBuf.size(), 0), reg.eventBuf.data(), reg.eventBuf.size()); if (reg.pitchBuf.size()) memmove(&*ret.insert(ret.cend(), reg.pitchBuf.size(), 0), reg.pitchBuf.data(), reg.pitchBuf.size()); if (reg.modBuf.size()) memmove(&*ret.insert(ret.cend(), reg.modBuf.size(), 0), reg.modBuf.data(), reg.modBuf.size()); ret.insert(ret.cend(), reg.padding, 0); curOffset += 12 + reg.eventBuf.size() + reg.pitchBuf.size() + reg.modBuf.size() + reg.padding; } memmove(&*ret.insert(ret.cend(), 64, 0), chanMap.data(), 64); if (tempoBuf.size()) memmove(&*ret.insert(ret.cend(), tempoBuf.size() * 8, 0), tempoBuf.data(), tempoBuf.size() * 8); *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = uint32_t(0xffffffff); } else { SongState::Header head; head.m_initialTempo = initTempo; head.m_loopStartTicks[0] = 0; if (loopChanCount == 1) { head.m_loopStartTicks[0] = loopStart[0] == INT_MAX ? 0 : loopStart[0]; } else if (loopChanCount > 1) { for (int i = 0; i < 16; ++i) head.m_loopStartTicks[i] = loopStart[i] == INT_MAX ? 0 : loopStart[i]; head.m_initialTempo |= 0x80000000; } size_t headSz = (head.m_initialTempo & 0x80000000) ? 0x58 : 0x18; head.m_trackIdxOff = headSz + regionBuf.size() * 12; head.m_regionIdxOff = head.m_trackIdxOff + 4 * 64 + 64 + curRegionOff; head.m_chanMapOff = head.m_trackIdxOff + 4 * 64; head.m_tempoTableOff = tempoBuf.size() ? head.m_regionIdxOff + 4 * regionDataIdxArr.size() : 0; head.m_chanMapOff2 = head.m_chanMapOff; uint32_t chanMapOff = head.m_chanMapOff; if (big) head.swapToBig(); *reinterpret_cast(&*ret.insert(ret.cend(), headSz, 0)) = head; for (SongState::TrackRegion& reg : regionBuf) *reinterpret_cast(&*ret.insert(ret.cend(), 12, 0)) = reg; for (size_t i = 0; i < 64; ++i) { if (i >= trackRegionIdxArr.size()) { ret.insert(ret.cend(), 4, 0); continue; } uint32_t idx = trackRegionIdxArr[i]; *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = big ? SBig(uint32_t(headSz + 4 * 64 + idx * 12)) : uint32_t(headSz + 4 * 64 + idx * 12); } memmove(&*ret.insert(ret.cend(), 64, 0), chanMap.data(), 64); uint32_t regBase = chanMapOff + 64; uint32_t curOffset = regBase; for (Region& reg : regions) { *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = big ? SBig(uint32_t(8)) : 8; if (reg.pitchBuf.size()) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = big ? SBig(uint32_t(curOffset + 12 + reg.eventBuf.size())) : uint32_t(curOffset + 12 + reg.eventBuf.size()); else ret.insert(ret.cend(), 4, 0); if (reg.modBuf.size()) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = big ? SBig(uint32_t(curOffset + 12 + reg.eventBuf.size() + reg.pitchBuf.size())) : uint32_t(curOffset + 12 + reg.eventBuf.size() + reg.pitchBuf.size()); else ret.insert(ret.cend(), 4, 0); if (reg.eventBuf.size()) memmove(&*ret.insert(ret.cend(), reg.eventBuf.size(), 0), reg.eventBuf.data(), reg.eventBuf.size()); if (reg.pitchBuf.size()) memmove(&*ret.insert(ret.cend(), reg.pitchBuf.size(), 0), reg.pitchBuf.data(), reg.pitchBuf.size()); if (reg.modBuf.size()) memmove(&*ret.insert(ret.cend(), reg.modBuf.size(), 0), reg.modBuf.data(), reg.modBuf.size()); ret.insert(ret.cend(), reg.padding, 0); curOffset += 12 + reg.eventBuf.size() + reg.pitchBuf.size() + reg.modBuf.size(); } for (uint32_t regOff : regionDataIdxArr) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = big ? SBig(uint32_t(regBase + regOff)) : uint32_t(regBase + regOff); if (tempoBuf.size()) memmove(&*ret.insert(ret.cend(), tempoBuf.size() * 8, 0), tempoBuf.data(), tempoBuf.size() * 8); *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = uint32_t(0xffffffff); } return ret; } } // namespace amuse