#include "amuse/SongConverter.hpp" #include "amuse/SongState.hpp" #include "amuse/Common.hpp" #include #include namespace amuse { static inline uint8_t clamp7(uint8_t val) {return std::max(0, std::min(127, int(val)));} enum class Status { NoteOff = 0x80, NoteOn = 0x90, NotePressure = 0xA0, ControlChange = 0xB0, ProgramChange = 0xC0, ChannelPressure = 0xD0, PitchBend = 0xE0, SysEx = 0xF0, TimecodeQuarterFrame = 0xF1, SongPositionPointer = 0xF2, SongSelect = 0xF3, TuneRequest = 0xF6, SysExTerm = 0xF7, TimingClock = 0xF8, Start = 0xFA, Continue = 0xFB, Stop = 0xFC, ActiveSensing = 0xFE, Reset = 0xFF, }; /* Event tags */ struct NoteEvent {}; struct CtrlEvent {}; struct ProgEvent {}; struct PitchEvent {}; /* Intermediate event */ struct Event { bool endEvent = false; bool controlChange = false; bool progChange = false; uint8_t channel; uint8_t noteOrCtrl; uint8_t velOrVal; uint8_t program; uint16_t length; bool isPitchBend = false; int pitchBend; Event(NoteEvent, uint8_t chan, uint8_t note, uint8_t vel, uint16_t len) : controlChange(false), channel(chan), noteOrCtrl(note), velOrVal(vel), length(len) {} Event(CtrlEvent, uint8_t chan, uint8_t note, uint8_t vel, uint16_t len) : controlChange(true), channel(chan), noteOrCtrl(note), velOrVal(vel), length(len) {} Event(ProgEvent, uint8_t chan, uint8_t prog) : progChange(true), channel(chan), program(prog) {} Event(PitchEvent, uint8_t chan, int pBend) : isPitchBend(true), channel(chan), pitchBend(pBend) {} }; class MIDIDecoder { int m_tick = 0; std::vector>> m_results; std::multimap m_tempos; std::array::iterator, 128> m_notes; void _addProgramChange(int prog) { m_results.emplace_back(); m_results.back().first = prog; for (size_t i=0 ; i<128 ; ++i) m_notes[i] = m_results.back().second.end(); } uint8_t m_status = 0; bool _readContinuedValue(std::vector::const_iterator& it, std::vector::const_iterator end, uint32_t& valOut) { uint8_t a = *it++; valOut = a & 0x7f; if (a & 0x80) { if (it == end) return false; valOut <<= 7; a = *it++; valOut |= a & 0x7f; if (a & 0x80) { if (it == end) return false; valOut <<= 7; a = *it++; valOut |= a & 0x7f; } } return true; } public: std::vector::const_iterator receiveBytes(std::vector::const_iterator begin, std::vector::const_iterator end) { std::vector::const_iterator it = begin; if (it == end) return begin; uint32_t deltaTime; _readContinuedValue(it, end, deltaTime); m_tick += deltaTime; uint8_t a = *it++; uint8_t b; if (a & 0x80) m_status = a; else it--; /* Not actually used as such for now */ if (m_results.empty()) _addProgramChange(0); std::multimap& res = m_results.back().second; if (m_status == 0xff) { /* Meta events */ if (it == end) return begin; a = *it++; uint32_t length; _readContinuedValue(it, end, length); switch (a) { case 0x51: { uint32_t tempo = 0; memcpy(&reinterpret_cast(&tempo)[1], &*it, 3); m_tempos.emplace(m_tick, 60000000 / SBig(tempo)); } default: it += length; } } else { uint8_t chan = m_status & 0xf; switch (Status(m_status & 0xf0)) { case Status::NoteOff: { if (it == end) return begin; a = *it++; if (it == end) return begin; b = *it++; uint8_t notenum = clamp7(a); std::multimap::iterator note = m_notes[notenum]; if (note != res.end()) { note->second.length = uint16_t(m_tick - note->first); m_notes[notenum] = res.end(); } break; } case Status::NoteOn: { if (it == end) return begin; a = *it++; if (it == end) return begin; b = *it++; uint8_t notenum = clamp7(a); uint8_t vel = clamp7(b); std::multimap::iterator note = m_notes[notenum]; if (note != res.end()) note->second.length = uint16_t(m_tick - note->first); m_notes[notenum] = res.emplace(m_tick, Event{NoteEvent{}, chan, notenum, vel, 0}); break; } case Status::NotePressure: { if (it == end) return begin; a = *it++; if (it == end) return begin; b = *it++; break; } case Status::ControlChange: { if (it == end) return begin; a = *it++; if (it == end) return begin; b = *it++; res.emplace(m_tick, Event{CtrlEvent{}, chan, clamp7(a), clamp7(b), 0}); break; } case Status::ProgramChange: { if (it == end) return begin; a = *it++; res.emplace(m_tick, Event{ProgEvent{}, chan, a}); break; } case Status::ChannelPressure: { if (it == end) return begin; a = *it++; break; } case Status::PitchBend: { if (it == end) return begin; a = *it++; if (it == end) return begin; b = *it++; res.emplace(m_tick, Event{PitchEvent{}, chan, clamp7(b) * 128 + clamp7(a)}); break; } case Status::SysEx: { switch (Status(m_status & 0xff)) { case Status::SysEx: { uint32_t len; if (!_readContinuedValue(it, end, len) || end - it < len) return begin; break; } case Status::TimecodeQuarterFrame: { if (it == end) return begin; a = *it++; break; } case Status::SongPositionPointer: { if (it == end) return begin; a = *it++; if (it == end) return begin; b = *it++; break; } case Status::SongSelect: { if (it == end) return begin; a = *it++; break; } case Status::TuneRequest: case Status::Start: case Status::Continue: case Status::Stop: case Status::Reset: case Status::SysExTerm: case Status::TimingClock: case Status::ActiveSensing: default: break; } break; } default: break; } } return it; } std::vector>>& getResults() {return m_results;} std::multimap& getTempos() {return m_tempos;} }; class MIDIEncoder { friend class SongConverter; std::vector m_result; uint8_t m_status = 0; void _sendMessage(const uint8_t* data, size_t len) { if (data[0] == m_status) { for (size_t i=1 ; i= 0x4000) { ptr = &send[0]; send[0] = 0x80 | ((val / 0x4000) & 0x7f); send[1] = 0x80; val &= 0x3fff; } if (val >= 0x80) { if (!ptr) ptr = &send[1]; send[1] = 0x80 | ((val / 0x80) & 0x7f); } if (!ptr) ptr = &send[2]; send[2] = val & 0x7f; size_t len = 3 - (ptr - send); for (size_t i=0 ; i(data)[i]); cmd = uint8_t(Status::SysExTerm); _sendMessage(&cmd, 1); } void timeCodeQuarterFrame(uint8_t message, uint8_t value) { uint8_t cmd[2] = {uint8_t(int(Status::TimecodeQuarterFrame)), uint8_t((message & 0x7 << 4) | (value & 0xf))}; _sendMessage(cmd, 2); } void songPositionPointer(uint16_t pointer) { uint8_t cmd[3] = {uint8_t(int(Status::SongPositionPointer)), uint8_t((pointer % 128) & 0x7f), uint8_t((pointer / 128) & 0x7f)}; _sendMessage(cmd, 3); } void songSelect(uint8_t song) { uint8_t cmd[2] = {uint8_t(int(Status::TimecodeQuarterFrame)), uint8_t(song & 0x7f)}; _sendMessage(cmd, 2); } void tuneRequest() { uint8_t cmd = uint8_t(Status::TuneRequest); _sendMessage(&cmd, 1); } void startSeq() { uint8_t cmd = uint8_t(Status::Start); _sendMessage(&cmd, 1); } void continueSeq() { uint8_t cmd = uint8_t(Status::Continue); _sendMessage(&cmd, 1); } void stopSeq() { uint8_t cmd = uint8_t(Status::Stop); _sendMessage(&cmd, 1); } void reset() { uint8_t cmd = uint8_t(Status::Reset); _sendMessage(&cmd, 1); } const std::vector& getResult() const {return m_result;} std::vector& getResult() {return m_result;} }; static uint32_t DecodeRLE(const unsigned char*& data) { uint32_t ret = 0; while (true) { uint32_t thisPart = *data & 0x7f; if (*data & 0x80) { ++data; thisPart = thisPart * 256 + *data; if (thisPart == 0) return -1; } if (thisPart == 32767) { ret += 32767; data += 2; continue; } ret += thisPart; data += 1; break; } return ret; } static void EncodeRLE(std::vector& vecOut, uint32_t val) { while (val >= 32767) { vecOut.push_back(0xff); vecOut.push_back(0xff); vecOut.push_back(0); val -= 32767; } if (val >= 128) { vecOut.push_back(uint8_t(val / 256) | 0x80); vecOut.push_back(uint8_t(val % 256)); } else vecOut.push_back(uint8_t(val)); } static int32_t DecodeContinuousRLE(const unsigned char*& data) { int32_t ret = int32_t(DecodeRLE(data)); if (ret >= 16384) return ret - 32767; return ret; } static void EncodeContinuousRLE(std::vector& vecOut, int32_t val) { if (val < 0) val += 32767; EncodeRLE(vecOut, uint32_t(val)); } static uint32_t DecodeTimeRLE(const unsigned char*& data) { uint32_t ret = 0; while (true) { uint16_t thisPart = SBig(*reinterpret_cast(data)); if (thisPart == 0xffff) { ret += 65535; data += 4; continue; } ret += thisPart; data += 2; break; } return ret; } static void EncodeTimeRLE(std::vector& vecOut, uint32_t val) { while (val >= 65535) { vecOut.push_back(0xff); vecOut.push_back(0xff); vecOut.push_back(0); vecOut.push_back(0); val -= 65535; } uint16_t lastPart = SBig(uint16_t(val)); vecOut.push_back(reinterpret_cast(&lastPart)[0]); vecOut.push_back(reinterpret_cast(&lastPart)[1]); } std::vector SongConverter::SongToMIDI(const unsigned char* data, Target& targetOut) { std::vector ret = {'M', 'T', 'h', 'd'}; uint32_t six32 = SBig(uint32_t(6)); for (int i=0 ; i<4 ; ++i) ret.push_back(reinterpret_cast(&six32)[i]); ret.push_back(0); ret.push_back(1); SongState song; song.initialize(data); if (song.m_bigEndian) { if (song.m_header.m_trackIdxOff == 0x18 || song.m_header.m_trackIdxOff == 0x58) targetOut = Target::GCN; else targetOut = Target::N64; } else targetOut = Target::PC; size_t trkCount = 1; for (std::experimental::optional& trk : song.m_tracks) if (trk) ++trkCount; uint16_t trkCount16 = SBig(uint16_t(trkCount)); ret.push_back(reinterpret_cast(&trkCount16)[0]); ret.push_back(reinterpret_cast(&trkCount16)[1]); uint16_t tickDiv16 = SBig(uint16_t(384)); ret.push_back(reinterpret_cast(&tickDiv16)[0]); ret.push_back(reinterpret_cast(&tickDiv16)[1]); /* Write tempo track */ { MIDIEncoder encoder; /* Initial tempo */ encoder._sendContinuedValue(0); encoder.getResult().push_back(0xff); encoder.getResult().push_back(0x51); encoder.getResult().push_back(3); uint32_t tempo24 = SBig(60000000 / song.m_tempo); for (int i=1 ; i<4 ; ++i) encoder.getResult().push_back(reinterpret_cast(&tempo24)[i]); /* Write out tempo changes */ int lastTick = 0; while (song.m_tempoPtr && song.m_tempoPtr->m_tick != 0xffffffff) { SongState::TempoChange change = *song.m_tempoPtr; if (song.m_bigEndian) change.swapBig(); encoder._sendContinuedValue(change.m_tick - lastTick); lastTick = change.m_tick; encoder.getResult().push_back(0xff); encoder.getResult().push_back(0x51); encoder.getResult().push_back(3); uint32_t tempo24 = SBig(60000000 / change.m_tempo); for (int i=1 ; i<4 ; ++i) encoder.getResult().push_back(reinterpret_cast(&tempo24)[i]); ++song.m_tempoPtr; } encoder.getResult().push_back(0); encoder.getResult().push_back(0xff); encoder.getResult().push_back(0x2f); encoder.getResult().push_back(0); ret.push_back('M'); ret.push_back('T'); ret.push_back('r'); ret.push_back('k'); uint32_t trkSz = SBig(uint32_t(encoder.getResult().size())); for (int i=0 ; i<4 ; ++i) ret.push_back(reinterpret_cast(&trkSz)[i]); ret.insert(ret.cend(), encoder.getResult().begin(), encoder.getResult().end()); } /* Iterate each SNG track into type-1 MIDI track */ for (std::experimental::optional& trk : song.m_tracks) { if (trk) { MIDIEncoder encoder; std::multimap allEvents; /* Iterate all regions */ while (trk->m_nextRegion->indexValid(song.m_bigEndian)) { std::multimap events; trk->advanceRegion(nullptr); uint32_t regStart = song.m_bigEndian ? SBig(trk->m_curRegion->m_startTick) : trk->m_curRegion->m_startTick; /* Initial program change */ if (trk->m_curRegion->m_progNum != 0xff) events.emplace(regStart, Event{ProgEvent{}, trk->m_midiChan, trk->m_curRegion->m_progNum}); /* Update continuous pitch data */ if (trk->m_pitchWheelData) { while (true) { /* See if there's an upcoming pitch change in this interval */ const unsigned char* ptr = trk->m_pitchWheelData; uint32_t deltaTicks = DecodeRLE(ptr); if (deltaTicks != 0xffffffff) { int32_t nextTick = trk->m_lastPitchTick + deltaTicks; int32_t pitchDelta = DecodeContinuousRLE(ptr); trk->m_lastPitchVal += pitchDelta; trk->m_pitchWheelData = ptr; trk->m_lastPitchTick = nextTick; events.emplace(regStart + nextTick, Event{PitchEvent{}, trk->m_midiChan, clamp(0, trk->m_lastPitchVal / 2 + 0x2000, 0x4000)}); } else break; } } /* Update continuous modulation data */ if (trk->m_modWheelData) { while (true) { /* See if there's an upcoming modulation change in this interval */ const unsigned char* ptr = trk->m_modWheelData; uint32_t deltaTicks = DecodeRLE(ptr); if (deltaTicks != 0xffffffff) { int32_t nextTick = trk->m_lastModTick + deltaTicks; int32_t modDelta = DecodeContinuousRLE(ptr); trk->m_lastModVal += modDelta; trk->m_modWheelData = ptr; trk->m_lastModTick = nextTick; events.emplace(regStart + nextTick, Event{CtrlEvent{}, trk->m_midiChan, 1, uint8_t(clamp(0, trk->m_lastModVal * 128 / 16384, 127)), 0}); } else break; } } /* Loop through as many commands as we can for this time period */ if (song.m_header.m_trackIdxOff == 0x18 || song.m_header.m_trackIdxOff == 0x58) { /* GameCube */ while (true) { /* Load next command */ if (*reinterpret_cast(trk->m_data) == 0xffff) { /* End of channel */ trk->m_data = nullptr; break; } else if (trk->m_data[0] & 0x80 && trk->m_data[1] & 0x80) { /* Control change */ uint8_t val = trk->m_data[0] & 0x7f; uint8_t ctrl = trk->m_data[1] & 0x7f; events.emplace(regStart + trk->m_eventWaitCountdown, Event{CtrlEvent{}, trk->m_midiChan, ctrl, val, 0}); trk->m_data += 2; } else if (trk->m_data[0] & 0x80) { /* Program change */ uint8_t prog = trk->m_data[0] & 0x7f; events.emplace(regStart + trk->m_eventWaitCountdown, Event{ProgEvent{}, trk->m_midiChan, prog}); trk->m_data += 2; } else { /* Note */ uint8_t note = trk->m_data[0] & 0x7f; uint8_t vel = trk->m_data[1] & 0x7f; uint16_t length = (song.m_bigEndian ? SBig(*reinterpret_cast(trk->m_data + 2)) : *reinterpret_cast(trk->m_data + 2)); events.emplace(regStart + trk->m_eventWaitCountdown, Event{NoteEvent{}, trk->m_midiChan, note, vel, length}); trk->m_data += 4; } /* Set next delta-time */ trk->m_eventWaitCountdown += int32_t(DecodeTimeRLE(trk->m_data)); } } else { /* N64 */ while (true) { /* Load next command */ if (*reinterpret_cast(&trk->m_data[2]) == 0xffff) { /* End of channel */ trk->m_data = nullptr; break; } else { if ((trk->m_data[2] & 0x80) != 0x80) { /* Note */ uint16_t length = (song.m_bigEndian ? SBig(*reinterpret_cast(trk->m_data)) : *reinterpret_cast(trk->m_data)); uint8_t note = trk->m_data[2] & 0x7f; uint8_t vel = trk->m_data[3] & 0x7f; events.emplace(regStart + trk->m_eventWaitCountdown, Event{NoteEvent{}, trk->m_midiChan, note, vel, length}); } else if (trk->m_data[2] & 0x80 && trk->m_data[3] & 0x80) { /* Control change */ uint8_t val = trk->m_data[2] & 0x7f; uint8_t ctrl = trk->m_data[3] & 0x7f; events.emplace(regStart + trk->m_eventWaitCountdown, Event{CtrlEvent{}, trk->m_midiChan, ctrl, val, 0}); } else if (trk->m_data[2] & 0x80) { /* Program change */ uint8_t prog = trk->m_data[2] & 0x7f; events.emplace(regStart + trk->m_eventWaitCountdown, Event{ProgEvent{}, trk->m_midiChan, prog}); } trk->m_data += 4; } /* Set next delta-time */ int32_t absTick = (song.m_bigEndian ? SBig(*reinterpret_cast(trk->m_data)) : *reinterpret_cast(trk->m_data)); trk->m_eventWaitCountdown += absTick - trk->m_lastN64EventTick; trk->m_lastN64EventTick = absTick; trk->m_data += 4; } } /* Merge events */ allEvents.insert(events.begin(), events.end()); /* Resolve key-off events */ for (auto& pair : events) { if (!pair.second.controlChange) { auto it = allEvents.emplace(pair.first + pair.second.length, pair.second); it->second.endEvent = true; } } } /* Emit MIDI events */ int lastTime = 0; for (auto& pair : allEvents) { encoder._sendContinuedValue(pair.first - lastTime); lastTime = pair.first; if (pair.second.controlChange) { encoder.controlChange(pair.second.channel, pair.second.noteOrCtrl, pair.second.velOrVal); } else if (pair.second.progChange) { encoder.programChange(trk->m_midiChan, pair.second.program); } else if (pair.second.isPitchBend) { encoder.pitchBend(trk->m_midiChan, pair.second.pitchBend); } else { if (pair.second.endEvent) encoder.noteOff(pair.second.channel, pair.second.noteOrCtrl, pair.second.velOrVal); else encoder.noteOn(pair.second.channel, pair.second.noteOrCtrl, pair.second.velOrVal); } } encoder.getResult().push_back(0); encoder.getResult().push_back(0xff); encoder.getResult().push_back(0x2f); encoder.getResult().push_back(0); /* Write out */ ret.push_back('M'); ret.push_back('T'); ret.push_back('r'); ret.push_back('k'); uint32_t trkSz = SBig(uint32_t(encoder.getResult().size())); for (int i=0 ; i<4 ; ++i) ret.push_back(reinterpret_cast(&trkSz)[i]); ret.insert(ret.cend(), encoder.getResult().begin(), encoder.getResult().end()); } } return ret; } std::vector SongConverter::MIDIToSong(const std::vector& data, Target target) { std::vector ret; std::vector::const_iterator it = data.cbegin(); bool bigEndian = (target == Target::GCN || target == Target::N64); struct MIDIHeader { char magic[4]; uint32_t length; uint16_t type; uint16_t count; uint16_t div; void swapBig() { length = SBig(length); type = SBig(type); count = SBig(count); div = SBig(div); } }; MIDIHeader header = *reinterpret_cast(&*it); header.swapBig(); it += 8 + header.length; if (memcmp(header.magic, "MThd", 4)) return {}; /* Only Type 0 and 1 MIDI files supported as input */ if (header.type == 0) header.count = 1; else if (header.type != 1) return {}; std::vector trackRegionIdxArr; std::vector regionDataIdxArr; std::vector regionBuf; uint32_t initTempo = 120; std::vector> tempoBuf; std::array chanMap; for (int i=0 ; i<64 ; ++i) chanMap[i] = 0xff; struct Region { std::vector eventBuf; std::vector pitchBuf; std::vector modBuf; bool operator==(const Region& other) const { if (eventBuf.size() != other.eventBuf.size()) return false; if (pitchBuf.size() != other.pitchBuf.size()) return false; if (modBuf.size() != other.modBuf.size()) return false; if (eventBuf.size() && memcmp(eventBuf.data(), other.eventBuf.data(), eventBuf.size())) return false; if (pitchBuf.size() && memcmp(pitchBuf.data(), other.pitchBuf.data(), pitchBuf.size())) return false; if (modBuf.size() && memcmp(modBuf.data(), other.modBuf.data(), modBuf.size())) return false; return true; } }; std::vector regions; int curRegionOff = 0; for (int i=0 ; i(&*it)); it += 4; if (i == 0) { /* Extract tempo events from first track */ std::vector::const_iterator begin = it; std::vector::const_iterator end = it + length; MIDIDecoder dec; while (begin != end) begin = dec.receiveBytes(begin, end); std::multimap& tempos = dec.getTempos(); if (tempos.size() == 1) initTempo = tempos.begin()->second; else if (tempos.size() > 1) { auto it = tempos.begin(); initTempo = it->second; ++it; for (auto& pair : tempos) { if (bigEndian) tempoBuf.emplace_back(SBig(uint32_t(pair.first * 384 / header.div)), SBig(uint32_t(pair.second))); else tempoBuf.emplace_back(pair.first * 384 / header.div, pair.second); } } if (header.type == 1) { it = end; continue; } } /* Extract channel events */ std::vector::const_iterator begin = it; std::vector::const_iterator end = it + length; it = end; MIDIDecoder dec; while (begin != end) begin = dec.receiveBytes(begin, end); std::vector>>& results = dec.getResults(); for (int c=0 ; c<16 ; ++c) { int lastTrackStartTick = 0; bool didChanInit = false; for (auto& prog : results) { bool didInit = false; int startTick; int lastEventTick; int lastPitchTick; int lastPitchVal; int lastModTick; int lastModVal; Region region; for (auto& event : prog.second) { uint32_t eventTick = event.first * 384 / header.div; if (event.second.channel == c) { if (!didInit) { didInit = true; startTick = eventTick; lastTrackStartTick = startTick; lastEventTick = startTick; lastPitchTick = startTick; lastPitchVal = 0; lastModTick = startTick; lastModVal = 0; } if (event.second.controlChange) { if (event.second.noteOrCtrl == 1) { EncodeRLE(region.modBuf, uint32_t(eventTick - lastModTick)); lastModTick = eventTick; int newMod = event.second.velOrVal * 16384 / 128; EncodeContinuousRLE(region.modBuf, newMod - lastModVal); lastModVal = newMod; } else { if (target == Target::GCN) { EncodeTimeRLE(region.eventBuf, uint32_t(eventTick - lastEventTick)); lastEventTick = eventTick; region.eventBuf.push_back(0x80 | event.second.velOrVal); region.eventBuf.push_back(0x80 | event.second.noteOrCtrl); } else if (target == Target::N64) { uint32_t tickBig = SBig(uint32_t(eventTick - startTick)); for (int i=0 ; i<4 ; ++i) region.eventBuf.push_back(reinterpret_cast(&tickBig)[i]); region.eventBuf.push_back(0x80 | event.second.velOrVal); region.eventBuf.push_back(0x80 | event.second.noteOrCtrl); } else if (target == Target::PC) { uint32_t tick = uint32_t(eventTick - startTick); for (int i=0 ; i<4 ; ++i) region.eventBuf.push_back(reinterpret_cast(&tick)[i]); region.eventBuf.push_back(0x80 | event.second.velOrVal); region.eventBuf.push_back(0x80 | event.second.noteOrCtrl); } } } else if (event.second.progChange) { if (target == Target::GCN) { EncodeTimeRLE(region.eventBuf, uint32_t(eventTick - lastEventTick)); lastEventTick = eventTick; region.eventBuf.push_back(0x80 | event.second.program); region.eventBuf.push_back(0); } else if (target == Target::N64) { uint32_t tickBig = SBig(uint32_t(eventTick - startTick)); for (int i=0 ; i<4 ; ++i) region.eventBuf.push_back(reinterpret_cast(&tickBig)[i]); region.eventBuf.push_back(0x80 | event.second.program); region.eventBuf.push_back(0); } else if (target == Target::PC) { uint32_t tick = uint32_t(eventTick - startTick); for (int i=0 ; i<4 ; ++i) region.eventBuf.push_back(reinterpret_cast(&tick)[i]); region.eventBuf.push_back(0x80 | event.second.program); region.eventBuf.push_back(0); } } else if (event.second.isPitchBend) { EncodeRLE(region.pitchBuf, uint32_t(eventTick - lastPitchTick)); lastPitchTick = eventTick; int newPitch = (event.second.pitchBend - 0x2000) * 2; EncodeContinuousRLE(region.pitchBuf, newPitch - lastPitchVal); lastPitchVal = newPitch; } else { if (target == Target::GCN) { EncodeTimeRLE(region.eventBuf, uint32_t(eventTick - lastEventTick)); lastEventTick = eventTick; region.eventBuf.push_back(event.second.noteOrCtrl); region.eventBuf.push_back(event.second.velOrVal); uint16_t lenBig = SBig(uint16_t(event.second.length)); region.eventBuf.push_back(reinterpret_cast(&lenBig)[0]); region.eventBuf.push_back(reinterpret_cast(&lenBig)[1]); } else if (target == Target::N64) { uint32_t tickBig = SBig(uint32_t(eventTick - startTick)); for (int i=0 ; i<4 ; ++i) region.eventBuf.push_back(reinterpret_cast(&tickBig)[i]); uint16_t lenBig = SBig(uint16_t(event.second.length)); region.eventBuf.push_back(reinterpret_cast(&lenBig)[0]); region.eventBuf.push_back(reinterpret_cast(&lenBig)[1]); region.eventBuf.push_back(event.second.noteOrCtrl); region.eventBuf.push_back(event.second.velOrVal); } else if (target == Target::PC) { uint32_t tick = uint32_t(eventTick - startTick); for (int i=0 ; i<4 ; ++i) region.eventBuf.push_back(reinterpret_cast(&tick)[i]); uint16_t len = uint16_t(event.second.length); region.eventBuf.push_back(reinterpret_cast(&len)[0]); region.eventBuf.push_back(reinterpret_cast(&len)[1]); region.eventBuf.push_back(event.second.noteOrCtrl); region.eventBuf.push_back(event.second.velOrVal); } } } } if (didInit) { if (!didChanInit) { didChanInit = true; if (trackRegionIdxArr.size() == 64) return {}; chanMap[trackRegionIdxArr.size()] = c; trackRegionIdxArr.push_back(regionBuf.size()); } /* Terminate region */ if (target == Target::GCN) { size_t pitchDelta = 0; size_t modDelta = 0; if (lastPitchTick > lastEventTick) pitchDelta = lastPitchTick - lastEventTick; if (lastModTick > lastEventTick) modDelta = lastModTick - lastEventTick; EncodeTimeRLE(region.eventBuf, std::max(pitchDelta, modDelta)); region.eventBuf.push_back(0xff); region.eventBuf.push_back(0xff); } else if (target == Target::N64) { uint32_t selTick = std::max(std::max(lastEventTick - startTick, lastPitchTick - startTick), lastModTick - startTick); uint32_t tickBig = SBig(uint32_t(selTick)); for (int i=0 ; i<4 ; ++i) region.eventBuf.push_back(reinterpret_cast(&tickBig)[i]); region.eventBuf.push_back(0); region.eventBuf.push_back(0); region.eventBuf.push_back(0xff); region.eventBuf.push_back(0xff); } else if (target == Target::PC) { uint32_t selTick = std::max(std::max(lastEventTick - startTick, lastPitchTick - startTick), lastModTick - startTick); uint32_t tick = uint32_t(selTick); for (int i=0 ; i<4 ; ++i) region.eventBuf.push_back(reinterpret_cast(&tick)[i]); region.eventBuf.push_back(0); region.eventBuf.push_back(0); region.eventBuf.push_back(0xff); region.eventBuf.push_back(0xff); } if (region.pitchBuf.size()) { region.pitchBuf.push_back(0x80); region.pitchBuf.push_back(0); } if (region.modBuf.size()) { region.modBuf.push_back(0x80); region.modBuf.push_back(0); } /* See if there's a matching region buffer already present */ int regIdx = 0; for (Region& reg : regions) { if (reg == region) break; ++regIdx; } if (regIdx == regions.size()) { regionDataIdxArr.push_back(curRegionOff); curRegionOff += 12 + region.eventBuf.size() + region.pitchBuf.size() + region.modBuf.size(); regions.push_back(std::move(region)); } /* Region header */ regionBuf.emplace_back(); SongState::TrackRegion& reg = regionBuf.back(); if (bigEndian) { reg.m_startTick = SBig(uint32_t(startTick)); reg.m_progNum = 0xff; reg.m_unk1 = 0xff; reg.m_unk2 = 0; reg.m_regionIndex = SBig(uint16_t(regIdx)); reg.m_unk3 = 0; } else { reg.m_startTick = uint32_t(startTick); reg.m_progNum = 0xff; reg.m_unk1 = 0xff; reg.m_unk2 = 0; reg.m_regionIndex = uint16_t(regIdx); reg.m_unk3 = 0; } } } if (didChanInit) { /* Terminating region header */ regionBuf.emplace_back(); SongState::TrackRegion& reg = regionBuf.back(); if (bigEndian) { reg.m_startTick = SBig(uint32_t(lastTrackStartTick)); reg.m_progNum = 0xff; reg.m_unk1 = 0xff; reg.m_unk2 = 0; reg.m_regionIndex = 0xffff; reg.m_unk3 = 0; } else { reg.m_startTick = uint32_t(lastTrackStartTick); reg.m_progNum = 0xff; reg.m_unk1 = 0xff; reg.m_unk2 = 0; reg.m_regionIndex = 0xffff; reg.m_unk3 = 0; } } } } if (target == Target::GCN) { SongState::Header head; head.m_trackIdxOff = 0x18; head.m_regionIdxOff = 0x18 + 4 * 64 + regionBuf.size() * 12; head.m_chanMapOff = head.m_regionIdxOff + 4 * regionDataIdxArr.size() + curRegionOff; head.m_tempoTableOff = tempoBuf.size() ? head.m_chanMapOff + 64 : 0; head.m_initialTempo = initTempo; head.m_unkOff = 0; uint32_t regIdxOff = head.m_regionIdxOff; head.swapBig(); *reinterpret_cast(&*ret.insert(ret.cend(), 0x18, 0)) = head; for (int i=0 ; i<64 ; ++i) { if (i >= trackRegionIdxArr.size()) { ret.insert(ret.cend(), 4, 0); continue; } uint32_t idx = trackRegionIdxArr[i]; *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = SBig(uint32_t(0x18 + 4 * 64 + idx * 12)); } for (SongState::TrackRegion& reg : regionBuf) *reinterpret_cast(&*ret.insert(ret.cend(), 12, 0)) = reg; uint32_t regBase = regIdxOff + 4 * regionDataIdxArr.size(); for (uint32_t regOff : regionDataIdxArr) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = SBig(uint32_t(regBase + regOff)); uint32_t curOffset = regBase; for (Region& reg : regions) { *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = SBig(uint32_t(8)); if (reg.pitchBuf.size()) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = SBig(uint32_t(curOffset + 12 + reg.eventBuf.size())); else ret.insert(ret.cend(), 4, 0); if (reg.modBuf.size()) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = SBig(uint32_t(curOffset + 12 + reg.eventBuf.size() + reg.pitchBuf.size())); else ret.insert(ret.cend(), 4, 0); if (reg.eventBuf.size()) memmove(&*ret.insert(ret.cend(), reg.eventBuf.size(), 0), reg.eventBuf.data(), reg.eventBuf.size()); if (reg.pitchBuf.size()) memmove(&*ret.insert(ret.cend(), reg.pitchBuf.size(), 0), reg.pitchBuf.data(), reg.pitchBuf.size()); if (reg.modBuf.size()) memmove(&*ret.insert(ret.cend(), reg.modBuf.size(), 0), reg.modBuf.data(), reg.modBuf.size()); curOffset += 12 + reg.eventBuf.size() + reg.pitchBuf.size() + reg.modBuf.size(); } memmove(&*ret.insert(ret.cend(), 64, 0), chanMap.data(), 64); if (tempoBuf.size()) memmove(&*ret.insert(ret.cend(), tempoBuf.size() * 8, 0), tempoBuf.data(), tempoBuf.size() * 8); *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = uint32_t(0xffffffff); } else if (target == Target::N64) { SongState::Header head; head.m_trackIdxOff = 0x18 + regionBuf.size() * 12; head.m_regionIdxOff = head.m_trackIdxOff + 4 * 64 + 64 + curRegionOff; head.m_chanMapOff = head.m_trackIdxOff + 4 * 64; head.m_tempoTableOff = tempoBuf.size() ? head.m_regionIdxOff + 4 * regionDataIdxArr.size() : 0; head.m_initialTempo = initTempo; head.m_unkOff = 0; uint32_t chanMapOff = head.m_chanMapOff; head.swapBig(); *reinterpret_cast(&*ret.insert(ret.cend(), 0x18, 0)) = head; for (SongState::TrackRegion& reg : regionBuf) *reinterpret_cast(&*ret.insert(ret.cend(), 12, 0)) = reg; for (int i=0 ; i<64 ; ++i) { if (i >= trackRegionIdxArr.size()) { ret.insert(ret.cend(), 4, 0); continue; } uint32_t idx = trackRegionIdxArr[i]; *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = SBig(uint32_t(0x18 + 4 * 64 + idx * 12)); } memmove(&*ret.insert(ret.cend(), 64, 0), chanMap.data(), 64); uint32_t regBase = chanMapOff + 64; uint32_t curOffset = regBase; for (Region& reg : regions) { *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = SBig(uint32_t(8)); if (reg.pitchBuf.size()) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = SBig(uint32_t(curOffset + 12 + reg.eventBuf.size())); else ret.insert(ret.cend(), 4, 0); if (reg.modBuf.size()) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = SBig(uint32_t(curOffset + 12 + reg.eventBuf.size() + reg.pitchBuf.size())); else ret.insert(ret.cend(), 4, 0); if (reg.eventBuf.size()) memmove(&*ret.insert(ret.cend(), reg.eventBuf.size(), 0), reg.eventBuf.data(), reg.eventBuf.size()); if (reg.pitchBuf.size()) memmove(&*ret.insert(ret.cend(), reg.pitchBuf.size(), 0), reg.pitchBuf.data(), reg.pitchBuf.size()); if (reg.modBuf.size()) memmove(&*ret.insert(ret.cend(), reg.modBuf.size(), 0), reg.modBuf.data(), reg.modBuf.size()); curOffset += 12 + reg.eventBuf.size() + reg.pitchBuf.size() + reg.modBuf.size(); } for (uint32_t regOff : regionDataIdxArr) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = SBig(uint32_t(regBase + regOff)); if (tempoBuf.size()) memmove(&*ret.insert(ret.cend(), tempoBuf.size() * 8, 0), tempoBuf.data(), tempoBuf.size() * 8); *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = uint32_t(0xffffffff); } else if (target == Target::PC) { SongState::Header head; head.m_trackIdxOff = 0x18 + regionBuf.size() * 12; head.m_regionIdxOff = head.m_trackIdxOff + 4 * 64 + 64 + curRegionOff; head.m_chanMapOff = head.m_trackIdxOff + 4 * 64; head.m_tempoTableOff = tempoBuf.size() ? head.m_regionIdxOff + 4 * regionDataIdxArr.size() : 0; head.m_initialTempo = initTempo; head.m_unkOff = 0; *reinterpret_cast(&*ret.insert(ret.cend(), 0x18, 0)) = head; for (SongState::TrackRegion& reg : regionBuf) *reinterpret_cast(&*ret.insert(ret.cend(), 12, 0)) = reg; for (int i=0 ; i<64 ; ++i) { if (i >= trackRegionIdxArr.size()) { ret.insert(ret.cend(), 4, 0); continue; } uint32_t idx = trackRegionIdxArr[i]; *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = uint32_t(0x18 + 4 * 64 + idx * 12); } memmove(&*ret.insert(ret.cend(), 64, 0), chanMap.data(), 64); uint32_t regBase = head.m_chanMapOff + 64; uint32_t curOffset = regBase; for (Region& reg : regions) { *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = uint32_t(8); if (reg.pitchBuf.size()) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = uint32_t(curOffset + 12 + reg.eventBuf.size()); else ret.insert(ret.cend(), 4, 0); if (reg.modBuf.size()) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = uint32_t(curOffset + 12 + reg.eventBuf.size() + reg.pitchBuf.size()); else ret.insert(ret.cend(), 4, 0); if (reg.eventBuf.size()) memmove(&*ret.insert(ret.cend(), reg.eventBuf.size(), 0), reg.eventBuf.data(), reg.eventBuf.size()); if (reg.pitchBuf.size()) memmove(&*ret.insert(ret.cend(), reg.pitchBuf.size(), 0), reg.pitchBuf.data(), reg.pitchBuf.size()); if (reg.modBuf.size()) memmove(&*ret.insert(ret.cend(), reg.modBuf.size(), 0), reg.modBuf.data(), reg.modBuf.size()); curOffset += 12 + reg.eventBuf.size() + reg.pitchBuf.size() + reg.modBuf.size(); } for (uint32_t regOff : regionDataIdxArr) *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = uint32_t(regBase + regOff); if (tempoBuf.size()) memmove(&*ret.insert(ret.cend(), tempoBuf.size() * 8, 0), tempoBuf.data(), tempoBuf.size() * 8); *reinterpret_cast(&*ret.insert(ret.cend(), 4, 0)) = uint32_t(0xffffffff); } return ret; } }