#include "amuse/Voice.hpp" #include "amuse/Submix.hpp" #include "amuse/IBackendVoice.hpp" #include "amuse/IBackendVoiceAllocator.hpp" #include "amuse/AudioGroup.hpp" #include "amuse/Common.hpp" #include "amuse/Engine.hpp" #include "amuse/dsp.h" #include #include namespace amuse { void Voice::_destroy() { Entity::_destroy(); for (std::shared_ptr& vox : m_childVoices) vox->_destroy(); } Voice::~Voice() { //fprintf(stderr, "DEALLOC %d\n", m_vid); } Voice::Voice(Engine& engine, const AudioGroup& group, int groupId, int vid, bool emitter, Submix* smx) : Entity(engine, group, groupId), m_vid(vid), m_emitter(emitter), m_submix(smx) { //fprintf(stderr, "ALLOC %d\n", m_vid); } Voice::Voice(Engine& engine, const AudioGroup& group, int groupId, ObjectId oid, int vid, bool emitter, Submix* smx) : Entity(engine, group, groupId, oid), m_vid(vid), m_emitter(emitter), m_submix(smx) { //fprintf(stderr, "ALLOC %d\n", m_vid); } void Voice::_reset() { m_curVol = 1.f; m_curReverbVol = 0.f; m_curPan = 0.f; m_curSpan = 0.f; m_curAftertouch = 0; m_pitchWheelUp = 600; m_pitchWheelDown = 600; m_pitchWheelVal = 0; m_pitchDirty = true; m_pitchSweep1 = 0; m_pitchSweep1Times = 0; m_pitchSweep1It = 0; m_pitchSweep2 = 0; m_pitchSweep2Times = 0; m_pitchSweep2It = 0; m_envelopeTime = -1.f; m_panningTime = -1.f; m_vibratoLevel = 0; m_vibratoModLevel = 0; m_vibratoPeriod = 0.f; m_tremoloScale = 0.f; m_tremoloModScale = 0.f; m_lfoPeriods[0] = 0.f; m_lfoPeriods[1] = 0.f; } void Voice::_macroSampleEnd() { if (m_sampleEndTrap.macroId != 0xffff) { if (m_sampleEndTrap.macroId == m_state.m_header.m_macroId) { m_state.m_pc.back().second = m_sampleEndTrap.macroStep; m_state.m_inWait = false; } else loadSoundObject(m_sampleEndTrap.macroId, m_sampleEndTrap.macroStep, m_state.m_ticksPerSec, m_state.m_initKey, m_state.m_initVel, m_state.m_initMod); } else m_state.sampleEndNotify(*this); } bool Voice::_checkSamplePos() { if (!m_curSample) return true; if (m_curSamplePos >= m_lastSamplePos) { if (m_curSample->first.m_loopLengthSamples) { /* Turn over looped sample */ m_curSamplePos = m_curSample->first.m_loopStartSample; m_prev1 = m_curSample->second.m_hist1; m_prev2 = m_curSample->second.m_hist2; } else { /* Notify sample end */ _macroSampleEnd(); m_curSample = nullptr; return true; } } /* Looped samples issue sample end when ADSR envelope complete */ if (m_volAdsr.isComplete()) { _macroSampleEnd(); m_curSample = nullptr; return true; } return false; } void Voice::_doKeyOff() { m_volAdsr.keyOff(); m_pitchAdsr.keyOff(); m_state.keyoffNotify(*this); } void Voice::_setTotalPitch(int32_t cents, bool slew) { //fprintf(stderr, "PITCH %d\n", cents); int32_t interval = cents - m_curSample->first.m_pitch * 100; double ratio = std::exp2(interval / 1200.0); m_sampleRate = m_curSample->first.m_sampleRate * ratio; m_backendVoice->setPitchRatio(ratio, slew); } bool Voice::_isRecursivelyDead() { if (m_voxState != VoiceState::Dead) return false; for (std::shared_ptr& vox : m_childVoices) if (!vox->_isRecursivelyDead()) return false; return true; } void Voice::_bringOutYourDead() { for (auto it = m_childVoices.begin() ; it != m_childVoices.end() ;) { Voice* vox = it->get(); vox->_bringOutYourDead(); if (vox->_isRecursivelyDead()) { it = _destroyVoice(vox); continue; } ++it; } } std::shared_ptr Voice::_findVoice(int vid, std::weak_ptr thisPtr) { if (m_vid == vid) return thisPtr.lock(); for (std::shared_ptr& vox : m_childVoices) { std::shared_ptr ret = vox->_findVoice(vid, vox); if (ret) return ret; } return {}; } std::unique_ptr& Voice::_ensureCtrlVals() { if (m_ctrlValsSelf) return m_ctrlValsSelf; m_ctrlValsSelf.reset(new int8_t[128]); memset(m_ctrlValsSelf.get(), 0, 128); return m_ctrlValsSelf; } std::shared_ptr Voice::_allocateVoice(double sampleRate, bool dynamicPitch) { auto it = m_childVoices.emplace(m_childVoices.end(), new Voice(m_engine, m_audioGroup, m_groupId, m_engine.m_nextVid++, m_emitter, m_submix)); m_childVoices.back()->m_backendVoice = m_engine.getBackend().allocateVoice(*m_childVoices.back(), sampleRate, dynamicPitch); m_childVoices.back()->m_engineIt = it; return m_childVoices.back(); } std::list>::iterator Voice::_destroyVoice(Voice* voice) { if (voice->m_destroyed) return m_childVoices.begin(); voice->_destroy(); return m_childVoices.erase(voice->m_engineIt); } static void ApplyVolume(float vol, int16_t& samp) { /* -10dB to 0dB mapped to full volume range */ float factor = (std::pow(10.f, vol - 1.f) - 0.1f) * (1.f / 0.9f); samp *= factor; } bool Voice::_advanceSample(int16_t& samp, int32_t& newPitch) { double dt = 1.0 / m_sampleRate; m_voiceTime += dt; bool refresh = false; /* Process active envelope */ if (m_envelopeTime >= 0.0) { m_envelopeTime += dt; float start = m_envelopeStart / 127.f; float end = m_envelopeEnd / 127.f; double t = std::max(0.0, std::min(1.0, m_envelopeTime / m_envelopeDur)); if (m_envelopeCurve) t = (*m_envelopeCurve)[int(t*127.f)] / 127.f; m_curVol = (start * (1.0f - t)) + (end * t); /* Done with envelope */ if (m_envelopeTime > m_envelopeDur) m_envelopeTime = -1.f; } /* Factor in ADSR envelope state */ float adsr = m_volAdsr.nextSample(m_sampleRate); float totalVol = m_userVol * m_curVol * adsr * (m_state.m_curVel / 127.f); /* Apply tremolo */ if (m_state.m_tremoloSel && (m_tremoloScale || m_tremoloModScale)) { float t = m_state.m_tremoloSel.evaluate(*this, m_state); if (m_tremoloScale && m_tremoloModScale) { float fac = (1.0f - t) + (m_tremoloScale * t); float modT = getModWheel() / 127.f; float modFac = (1.0f - modT) + (m_tremoloModScale * modT); totalVol *= fac * modFac; } else if (m_tremoloScale) { float fac = (1.0f - t) + (m_tremoloScale * t); totalVol *= fac; } else if (m_tremoloModScale) { float modT = getModWheel() / 127.f; float modFac = (1.0f - modT) + (m_tremoloModScale * modT); totalVol *= modFac; } } /* Apple total volume to sample using decibel scale */ ApplyVolume(ClampFull(totalVol), samp); /* Process active pan-sweep */ if (m_panningTime >= 0.f) { m_panningTime += dt; float start = (m_panPos - 64) / 64.f; float end = (m_panPos + m_panWidth - 64) / 64.f; float t = std::max(0.f, std::min(1.f, m_panningTime / m_panningDur)); m_curPan = (start * (1.0f - t)) + (end * t); refresh = true; /* Done with panning */ if (m_panningTime > m_panningDur) m_panningTime = -1.f; } /* Process active span-sweep */ if (m_spanningTime >= 0.f) { m_spanningTime += dt; float start = (m_spanPos - 64) / 64.f; float end = (m_spanPos + m_spanWidth - 64) / 64.f; float t = std::max(0.f, std::min(1.f, m_spanningTime / m_spanningDur)); m_curSpan = (start * (1.0f - t)) + (end * t); refresh = true; /* Done with spanning */ if (m_spanningTime > m_spanningDur) m_spanningTime = -1.f; } /* Calculate total pitch */ newPitch = m_curPitch; refresh |= m_pitchDirty; m_pitchDirty = false; if (m_pitchEnv) { newPitch = m_curPitch * m_pitchAdsr.nextSample(m_sampleRate); refresh = true; } /* Process pitch sweep 1 */ if (m_pitchSweep1It < m_pitchSweep1Times) { ++m_pitchSweep1It; m_pitchSweep1 = m_pitchSweep1Add * m_pitchSweep1It / m_pitchSweep1Times; refresh = true; } /* Process pitch sweep 2 */ if (m_pitchSweep2It < m_pitchSweep2Times) { ++m_pitchSweep2It; m_pitchSweep2 = m_pitchSweep2Add * m_pitchSweep2It / m_pitchSweep2Times; refresh = true; } /* True if backend voice needs reconfiguration before next sample */ return refresh; } size_t Voice::supplyAudio(size_t samples, int16_t* data) { uint32_t samplesRem = samples; size_t samplesProc = 0; bool dead = true; /* Attempt to load stopped sample for immediate decoding */ if (!m_curSample) { dead = m_state.advance(*this, samples / m_sampleRate); if (!dead) { memset(data, 0, sizeof(int16_t) * samples); return samples; } } else dead = m_state.advance(*this, samples / m_sampleRate); if (m_curSample) { uint32_t block = m_curSamplePos / 14; uint32_t rem = m_curSamplePos % 14; bool refresh = false; int32_t curPitch = m_curPitch; if (rem) { uint32_t remCount = std::min(samplesRem, m_lastSamplePos - block * 14); uint32_t decSamples; switch (m_curFormat) { case SampleFormat::DSP: { decSamples = DSPDecompressFrameRanged(data, m_curSampleData + 8 * block, m_curSample->second.m_coefs, &m_prev1, &m_prev2, rem, remCount); break; } case SampleFormat::PCM: { const int16_t* pcm = reinterpret_cast(m_curSampleData); remCount = std::min(samplesRem, m_lastSamplePos - m_curSamplePos); for (uint32_t i=0 ; isecond.m_coefs, &m_prev1, &m_prev2, remCount); break; } case SampleFormat::PCM: { const int16_t* pcm = reinterpret_cast(m_curSampleData); remCount = std::min(samplesRem, m_lastSamplePos - m_curSamplePos); for (uint32_t i=0 ; i& vox : m_childVoices) maxVid = std::max(maxVid, vox->maxVid()); return maxVid; } std::shared_ptr Voice::_startChildMacro(ObjectId macroId, int macroStep, double ticksPerSec, uint8_t midiKey, uint8_t midiVel, uint8_t midiMod, bool pushPc) { std::shared_ptr vox = _allocateVoice(32000.0, true); if (!vox->loadSoundObject(macroId, macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc)) { _destroyVoice(vox.get()); return {}; } vox->setVolume(m_userVol); return vox; } std::shared_ptr Voice::startChildMacro(int8_t addNote, ObjectId macroId, int macroStep) { return _startChildMacro(macroId, macroStep, 1000.0, m_state.m_initKey + addNote, m_state.m_initVel, m_state.m_initMod); } bool Voice::_loadSoundMacro(const unsigned char* macroData, int macroStep, double ticksPerSec, uint8_t midiKey, uint8_t midiVel, uint8_t midiMod, bool pushPc) { if (m_state.m_pc.empty()) m_state.initialize(macroData, macroStep, ticksPerSec, midiKey, midiVel, midiMod); else { if (!pushPc) m_state.m_pc.clear(); m_state.m_pc.push_back({macroData, macroStep}); m_state.m_header = *reinterpret_cast(macroData); m_state.m_header.swapBig(); } m_voxState = VoiceState::Playing; m_backendVoice->start(); return true; } bool Voice::_loadKeymap(const Keymap* keymap, int macroStep, double ticksPerSec, uint8_t midiKey, uint8_t midiVel, uint8_t midiMod, bool pushPc) { const Keymap& km = keymap[midiKey]; midiKey += km.transpose; return loadSoundObject(SBig(km.objectId), macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc); } bool Voice::_loadLayer(const std::vector& layer, int macroStep, double ticksPerSec, uint8_t midiKey, uint8_t midiVel, uint8_t midiMod, bool pushPc) { bool ret = false; for (const LayerMapping* mapping : layer) { if (midiKey >= mapping->keyLo && midiKey <= mapping->keyHi) { uint8_t mappingKey = midiKey + mapping->transpose; if (m_voxState != VoiceState::Playing) ret |= loadSoundObject(SBig(mapping->objectId), macroStep, ticksPerSec, mappingKey, midiVel, midiMod, pushPc); else ret |= _startChildMacro(SBig(mapping->objectId), macroStep, ticksPerSec, mappingKey, midiVel, midiMod, pushPc).operator bool(); } } return ret; } bool Voice::loadSoundObject(ObjectId objectId, int macroStep, double ticksPerSec, uint8_t midiKey, uint8_t midiVel, uint8_t midiMod, bool pushPc) { const unsigned char* macroData = m_audioGroup.getPool().soundMacro(objectId); if (macroData) return _loadSoundMacro(macroData, macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc); const Keymap* keymap = m_audioGroup.getPool().keymap(objectId); if (keymap) return _loadKeymap(keymap, macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc); const std::vector* layer = m_audioGroup.getPool().layer(objectId); if (layer) return _loadLayer(*layer, macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc); return false; } void Voice::_macroKeyOff() { if (m_voxState == VoiceState::Playing) { if (m_sustained) m_sustainKeyOff = true; else _doKeyOff(); m_voxState = VoiceState::KeyOff; } } void Voice::keyOff() { if (m_keyoffTrap.macroId != 0xffff) { if (m_keyoffTrap.macroId == m_state.m_header.m_macroId) { m_state.m_pc.back().second = m_keyoffTrap.macroStep; m_state.m_inWait = false; } else loadSoundObject(m_keyoffTrap.macroId, m_keyoffTrap.macroStep, m_state.m_ticksPerSec, m_state.m_initKey, m_state.m_initVel, m_state.m_initMod); } else _macroKeyOff(); for (const std::shared_ptr& vox : m_childVoices) vox->keyOff(); } void Voice::message(int32_t val) { m_messageQueue.push_back(val); if (m_messageTrap.macroId != 0xffff) { if (m_messageTrap.macroId == m_state.m_header.m_macroId) m_state.m_pc.back().second = m_messageTrap.macroStep; else loadSoundObject(m_messageTrap.macroId, m_messageTrap.macroStep, m_state.m_ticksPerSec, m_state.m_initKey, m_state.m_initVel, m_state.m_initMod); } } void Voice::startSample(int16_t sampId, int32_t offset) { m_curSample = m_audioGroup.getSample(sampId); if (m_curSample) { _reset(); m_sampleRate = m_curSample->first.m_sampleRate; m_curPitch = m_curSample->first.m_pitch; setPitchWheel(m_curPitchWheel); m_backendVoice->resetSampleRate(m_curSample->first.m_sampleRate); int32_t numSamples = m_curSample->first.m_numSamples & 0xffffff; if (offset) { if (m_curSample->first.m_loopLengthSamples) { if (offset > m_curSample->first.m_loopStartSample) offset = ((offset - m_curSample->first.m_loopStartSample) % m_curSample->first.m_loopLengthSamples) + m_curSample->first.m_loopStartSample; } else offset = clamp(0, offset, numSamples); } m_curSamplePos = offset; m_curSampleData = m_audioGroup.getSampleData(m_curSample->first.m_sampleOff); m_prev1 = 0; m_prev2 = 0; m_curFormat = SampleFormat(m_curSample->first.m_numSamples >> 24); m_lastSamplePos = m_curSample->first.m_loopLengthSamples ? (m_curSample->first.m_loopStartSample + m_curSample->first.m_loopLengthSamples) : numSamples; if (m_curFormat != SampleFormat::DSP && m_curFormat != SampleFormat::PCM) { m_curSample = nullptr; return; } _checkSamplePos(); /* Seek DSPADPCM state if needed */ if (m_curSample && m_curSamplePos && m_curFormat == SampleFormat::DSP) { uint32_t block = m_curSamplePos / 14; uint32_t rem = m_curSamplePos % 14; for (uint32_t b = 0 ; b < block ; ++b) DSPDecompressFrameStateOnly(m_curSampleData + 8 * b, m_curSample->second.m_coefs, &m_prev1, &m_prev2, 14); if (rem) DSPDecompressFrameStateOnly(m_curSampleData + 8 * block, m_curSample->second.m_coefs, &m_prev1, &m_prev2, rem); } } } void Voice::stopSample() { m_curSample = nullptr; } void Voice::setVolume(float vol) { m_userVol = clamp(0.f, vol, 1.f); for (std::shared_ptr& vox : m_childVoices) vox->setVolume(vol); } void Voice::setPan(float pan) { m_curPan = clamp(-1.f, pan, 1.f); for (std::shared_ptr& vox : m_childVoices) vox->setPan(pan); } void Voice::setSurroundPan(float span) { m_curSpan = clamp(-1.f, span, 1.f); for (std::shared_ptr& vox : m_childVoices) vox->setSurroundPan(span); } void Voice::startEnvelope(double dur, float vol, const Curve* envCurve) { m_envelopeTime = m_voiceTime; m_envelopeDur = dur; m_envelopeStart = clamp(0.f, m_curVol, 1.f); m_envelopeEnd = clamp(0.f, vol, 1.f); m_envelopeCurve = envCurve; } void Voice::startFadeIn(double dur, float vol, const Curve* envCurve) { m_envelopeTime = m_voiceTime; m_envelopeDur = dur; m_envelopeStart = 0.f; m_envelopeEnd = clamp(0.f, m_curVol, 1.f); m_envelopeCurve = envCurve; } void Voice::startPanning(double dur, uint8_t panPos, uint8_t panWidth) { m_panningTime = m_voiceTime; m_panningDur = dur; m_panPos = panPos; m_panWidth = panWidth; } void Voice::startSpanning(double dur, uint8_t spanPos, uint8_t spanWidth) { m_spanningTime = m_voiceTime; m_spanningDur = dur; m_spanPos = spanPos; m_spanWidth = spanWidth; } void Voice::setPitchKey(int32_t cents) { m_curPitch = cents; m_pitchDirty = true; } void Voice::setPedal(bool pedal) { if (m_sustained && !pedal && m_sustainKeyOff) { m_sustainKeyOff = false; _doKeyOff(); } m_sustained = pedal; for (std::shared_ptr& vox : m_childVoices) vox->setPedal(pedal); } void Voice::setDoppler(float doppler) { } void Voice::setVibrato(int32_t level, int32_t modLevel, float period) { m_vibratoLevel = level; m_vibratoModLevel = modLevel; m_vibratoPeriod = period; } void Voice::setMod2VibratoRange(int32_t modLevel) { m_vibratoModLevel = modLevel; } void Voice::setTremolo(float tremoloScale, float tremoloModScale) { m_tremoloScale = tremoloScale; m_tremoloModScale = tremoloModScale; } void Voice::setPitchSweep1(uint8_t times, int16_t add) { m_pitchSweep1 = 0; m_pitchSweep1It = 0; m_pitchSweep1Times = times * 160; m_pitchSweep1Add = add; } void Voice::setPitchSweep2(uint8_t times, int16_t add) { m_pitchSweep2 = 0; m_pitchSweep2It = 0; m_pitchSweep2Times = times * 160; m_pitchSweep2Add = add; } void Voice::setReverbVol(float rvol) { m_curReverbVol = rvol; } void Voice::setAdsr(ObjectId adsrId, bool dls) { if (dls) { const ADSRDLS* adsr = m_audioGroup.getPool().tableAsAdsrDLS(adsrId); if (adsr) { m_volAdsr.reset(adsr, m_state.m_initKey, m_state.m_initVel); if (m_voxState == VoiceState::KeyOff) m_volAdsr.keyOff(); } } else { const ADSR* adsr = m_audioGroup.getPool().tableAsAdsr(adsrId); if (adsr) { m_volAdsr.reset(adsr); if (m_voxState == VoiceState::KeyOff) m_volAdsr.keyOff(); } } } void Voice::setPitchFrequency(uint32_t hz, uint16_t fine) { m_sampleRate = hz + fine / 65536.0; m_backendVoice->setPitchRatio(1.0, false); m_backendVoice->resetSampleRate(m_sampleRate); } void Voice::setPitchAdsr(ObjectId adsrId, int32_t cents) { const ADSRDLS* adsr = m_audioGroup.getPool().tableAsAdsrDLS(adsrId); if (adsr) { m_pitchAdsr.reset(adsr, m_state.m_initKey, m_state.m_initVel); m_pitchEnvRange = cents; m_pitchEnv = true; } } void Voice::setPitchWheel(float pitchWheel) { m_curPitchWheel = amuse::clamp(-1.f, pitchWheel, 1.f); if (pitchWheel > 0.f) m_pitchWheelVal = m_pitchWheelUp * m_curPitchWheel; else if (pitchWheel < 0.f) m_pitchWheelVal = m_pitchWheelDown * m_curPitchWheel; else m_pitchWheelVal = 0; m_pitchDirty = true; for (std::shared_ptr& vox : m_childVoices) vox->setPitchWheel(pitchWheel); } void Voice::setPitchWheelRange(int8_t up, int8_t down) { m_pitchWheelUp = up * 100; m_pitchWheelDown = down * 100; setPitchWheel(m_curPitchWheel); } void Voice::setAftertouch(uint8_t aftertouch) { m_curAftertouch = aftertouch; for (std::shared_ptr& vox : m_childVoices) vox->setAftertouch(aftertouch); } void Voice::notifyCtrlChange(uint8_t ctrl, int8_t val) { if (ctrl == 64) { if (val >= 64) setPedal(true); else setPedal(false); } for (std::shared_ptr& vox : m_childVoices) vox->notifyCtrlChange(ctrl, val); } size_t Voice::getTotalVoices() const { size_t ret = 1; for (const std::shared_ptr& vox : m_childVoices) ret += vox->getTotalVoices(); return ret; } }