/* SoX Resampler Library Copyright (c) 2007-13 robs@users.sourceforge.net * Licence for this file: LGPL v2.1 See LICENCE for details. */ /* Resample using an interpolated poly-phase FIR with length LEN.*/ /* Input must be followed by LEN-1 samples. */ #define a (coef(p->shared->poly_fir_coefs, COEF_INTERP, FIR_LENGTH, phase, 0,j)) #define b (coef(p->shared->poly_fir_coefs, COEF_INTERP, FIR_LENGTH, phase, 1,j)) #define c (coef(p->shared->poly_fir_coefs, COEF_INTERP, FIR_LENGTH, phase, 2,j)) #define d (coef(p->shared->poly_fir_coefs, COEF_INTERP, FIR_LENGTH, phase, 3,j)) #if COEF_INTERP == 0 #define _ sum += a *in[j], ++j; #elif COEF_INTERP == 1 #define _ sum += (b *x + a)*in[j], ++j; #elif COEF_INTERP == 2 #define _ sum += ((c *x + b)*x + a)*in[j], ++j; #elif COEF_INTERP == 3 #define _ sum += (((d*x + c)*x + b)*x + a)*in[j], ++j; #else #error COEF_INTERP #endif static void FUNCTION(stage_t * p, fifo_t * output_fifo) { sample_t const * input = stage_read_p(p); int i, num_in = stage_occupancy(p), max_num_out = 1 + (int)(num_in*p->out_in_ratio); sample_t * output = fifo_reserve(output_fifo, max_num_out); #if defined HI_PREC_CLOCK #if FLOAT_HI_PREC_CLOCK if (p->use_hi_prec_clock) { float_step_t at = p->at.flt; for (i = 0; (int)at < num_in; ++i, at += p->step.flt) { sample_t const * in = input + (int)at; float_step_t frac = at - (int)at; int phase = (int)(frac * (1 << PHASE_BITS)); #if COEF_INTERP > 0 sample_t x = (sample_t)(frac * (1 << PHASE_BITS) - phase); #endif sample_t sum = 0; int j = 0; CONVOLVE output[i] = sum; } fifo_read(&p->fifo, (int)at, NULL); p->at.flt = at - (int)at; } else #else if (p->use_hi_prec_clock) { for (i = 0; p->at.integer < num_in; ++i, p->at.fix.ls.all += p->step.fix.ls.all, p->at.whole += p->step.whole + (p->at.fix.ls.all < p->step.fix.ls.all)) { sample_t const * in = input + p->at.integer; uint32_t frac = p->at.fraction; int phase = (int)(frac >> (32 - PHASE_BITS)); /* high-order bits */ #if COEF_INTERP > 0 /* low-order bits, scaled to [0,1) */ sample_t x = (sample_t)((frac << PHASE_BITS) * (1 / MULT32)); #endif sample_t sum = 0; int j = 0; CONVOLVE output[i] = sum; } fifo_read(&p->fifo, p->at.integer, NULL); p->at.integer = 0; } else #endif #endif { for (i = 0; p->at.integer < num_in; ++i, p->at.whole += p->step.whole) { sample_t const * in = input + p->at.integer; uint32_t frac = p->at.fraction; int phase = (int)(frac >> (32 - PHASE_BITS)); /* high-order bits */ #if COEF_INTERP > 0 /* low-order bits, scaled to [0,1) */ sample_t x = (sample_t)((frac << PHASE_BITS) * (1 / MULT32)); #endif sample_t sum = 0; int j = 0; CONVOLVE output[i] = sum; } fifo_read(&p->fifo, p->at.integer, NULL); p->at.integer = 0; } assert(max_num_out - i >= 0); fifo_trim_by(output_fifo, max_num_out - i); } #undef _ #undef a #undef b #undef c #undef d #undef COEF_INTERP #undef CONVOLVE #undef FIR_LENGTH #undef FUNCTION #undef PHASE_BITS