#include "boo/graphicsdev/GL.hpp" #include "boo/graphicsdev/glew.h" #include "boo/graphicsdev/GLSLMacros.hpp" #include "boo/IApplication.hpp" #include "boo/IGraphicsContext.hpp" #include "lib/graphicsdev/Common.hpp" #include #include #include #include #include #include #include #include #if _WIN32 #include "lib/win/WinCommon.hpp" #endif #undef min #undef max constexpr char GammaVS[] = "#version 330\n" BOO_GLSL_BINDING_HEAD "layout(location=0) in vec4 posIn;\n" "layout(location=1) in vec4 uvIn;\n" "\n" "struct VertToFrag\n" "{\n" " vec2 uv;\n" "};\n" "\n" "SBINDING(0) out VertToFrag vtf;\n" "void main()\n" "{\n" " vtf.uv = uvIn.xy;\n" " gl_Position = posIn;\n" "}\n"; constexpr char GammaFS[] = "#version 330\n" BOO_GLSL_BINDING_HEAD "struct VertToFrag\n" "{\n" " vec2 uv;\n" "};\n" "\n" "SBINDING(0) in VertToFrag vtf;\n" "layout(location=0) out vec4 colorOut;\n" "TBINDING0 uniform sampler2D screenTex;\n" "TBINDING1 uniform sampler2D gammaLUT;\n" "void main()\n" "{\n" " ivec4 tex = ivec4(texture(screenTex, vtf.uv) * 65535.0);\n" " for (int i=0 ; i<3 ; ++i)\n" " colorOut[i] = texelFetch(gammaLUT, ivec2(tex[i] % 256, tex[i] / 256), 0).r;\n" "}\n"; namespace boo { static logvisor::Module Log("boo::GL"); class GLDataFactoryImpl; struct GLCommandQueue; class GLDataFactoryImpl final : public GLDataFactory, public GraphicsDataFactoryHead { friend struct GLCommandQueue; friend class GLDataFactory::Context; IGraphicsContext* m_parent; GLContext* m_glCtx; bool m_hasTessellation = false; uint32_t m_maxPatchSize = 0; float m_gamma = 1.f; ObjToken m_gammaShader; ObjToken m_gammaLUT; ObjToken m_gammaVBO; ObjToken m_gammaBinding; void SetupGammaResources() { /* Good enough place for this */ if (!glslang::InitializeProcess()) Log.report(logvisor::Error, FMT_STRING("unable to initialize glslang")); if (GLEW_ARB_tessellation_shader) { m_hasTessellation = true; GLint maxPVerts = 0; glGetIntegerv(GL_MAX_PATCH_VERTICES, &maxPVerts); m_maxPatchSize = uint32_t(maxPVerts); } glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); commitTransaction([this](IGraphicsDataFactory::Context& ctx) { auto vertex = ctx.newShaderStage(reinterpret_cast(GammaVS), 0, PipelineStage::Vertex); auto fragment = ctx.newShaderStage(reinterpret_cast(GammaFS), 0, PipelineStage::Fragment); const AdditionalPipelineInfo info = { BlendFactor::One, BlendFactor::Zero, Primitive::TriStrips, ZTest::None, false, true, false, CullMode::None}; const std::array vfmt{{{VertexSemantic::Position4}, {VertexSemantic::UV4}}}; m_gammaShader = ctx.newShaderPipeline(std::move(vertex), std::move(fragment), vfmt.data(), info); m_gammaLUT = ctx.newDynamicTexture(256, 256, TextureFormat::I16, TextureClampMode::ClampToEdge); struct Vert { std::array pos; std::array uv; }; constexpr std::array verts{{ {{-1.f, -1.f, 0.f, 1.f}, {0.f, 0.f, 0.f, 0.f}}, {{1.f, -1.f, 0.f, 1.f}, {1.f, 0.f, 0.f, 0.f}}, {{-1.f, 1.f, 0.f, 1.f}, {0.f, 1.f, 0.f, 0.f}}, {{1.f, 1.f, 0.f, 1.f}, {1.f, 1.f, 0.f, 0.f}}, }}; m_gammaVBO = ctx.newStaticBuffer(BufferUse::Vertex, verts.data(), sizeof(Vert), verts.size()); const std::array, 2> texs{{ {}, m_gammaLUT.get(), }}; m_gammaBinding = ctx.newShaderDataBinding(m_gammaShader, m_gammaVBO.get(), {}, {}, 0, nullptr, nullptr, texs.size(), texs.data(), nullptr, nullptr); return true; } BooTrace); } void DestroyGammaResources() { m_gammaBinding.reset(); m_gammaVBO.reset(); m_gammaLUT.reset(); m_gammaShader.reset(); } public: GLDataFactoryImpl(IGraphicsContext* parent, GLContext* glCtx) : m_parent(parent), m_glCtx(glCtx) {} Platform platform() const override { return Platform::OpenGL; } const SystemChar* platformName() const override { return _SYS_STR("OpenGL"); } void commitTransaction(const FactoryCommitFunc& trans __BooTraceArgs) override; ObjToken newPoolBuffer(BufferUse use, size_t stride, size_t count __BooTraceArgs) override; void setDisplayGamma(float gamma) override { m_gamma = gamma; if (gamma != 1.f) UpdateGammaLUT(m_gammaLUT.get(), gamma); } bool isTessellationSupported(uint32_t& maxPatchSizeOut) override { maxPatchSizeOut = m_maxPatchSize; return m_hasTessellation; } void waitUntilShadersReady() override {} bool areShadersReady() override { return true; } }; constexpr std::array USE_TABLE{ GL_INVALID_ENUM, GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_UNIFORM_BUFFER, }; class GLGraphicsBufferS : public GraphicsDataNode { friend class GLDataFactory; friend struct GLCommandQueue; GLuint m_buf; GLenum m_target; GLGraphicsBufferS(const ObjToken& parent, BufferUse use, const void* data, size_t sz) : GraphicsDataNode(parent) { m_target = USE_TABLE[int(use)]; glGenBuffers(1, &m_buf); glBindBuffer(m_target, m_buf); glBufferData(m_target, sz, data, GL_STATIC_DRAW); } public: ~GLGraphicsBufferS() override { glDeleteBuffers(1, &m_buf); } void bindVertex() const { glBindBuffer(GL_ARRAY_BUFFER, m_buf); } void bindIndex() const { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_buf); } void bindUniform(size_t idx) const { glBindBufferBase(GL_UNIFORM_BUFFER, idx, m_buf); } void bindUniformRange(size_t idx, GLintptr off, GLsizeiptr size) const { glBindBufferRange(GL_UNIFORM_BUFFER, idx, m_buf, off, size); } }; template class GLGraphicsBufferD : public GraphicsDataNode { friend class GLDataFactory; friend class GLDataFactoryImpl; friend struct GLCommandQueue; std::array m_bufs{}; GLenum m_target; std::unique_ptr m_cpuBuf; size_t m_cpuSz = 0; int m_validMask = 0; GLGraphicsBufferD(const ObjToken& parent, BufferUse use, size_t sz) : GraphicsDataNode(parent) , m_target(USE_TABLE[int(use)]) , m_cpuBuf(new uint8_t[sz]) , m_cpuSz(sz) { glGenBuffers(GLsizei(m_bufs.size()), m_bufs.data()); for (const GLuint buf : m_bufs) { glBindBuffer(m_target, buf); glBufferData(m_target, m_cpuSz, nullptr, GL_STREAM_DRAW); } } public: ~GLGraphicsBufferD() override { glDeleteBuffers(GLsizei(m_bufs.size()), m_bufs.data()); } void update(int b) { int slot = 1 << b; if ((slot & m_validMask) == 0) { glBindBuffer(m_target, m_bufs[b]); glBufferSubData(m_target, 0, m_cpuSz, m_cpuBuf.get()); m_validMask |= slot; } } void load(const void* data, size_t sz) override { size_t bufSz = std::min(sz, m_cpuSz); memcpy(m_cpuBuf.get(), data, bufSz); m_validMask = 0; } void* map(size_t sz) override { if (sz > m_cpuSz) return nullptr; return m_cpuBuf.get(); } void unmap() override { m_validMask = 0; } void bindVertex(int b) { glBindBuffer(GL_ARRAY_BUFFER, m_bufs[b]); } void bindIndex(int b) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_bufs[b]); } void bindUniform(size_t idx, int b) { glBindBufferBase(GL_UNIFORM_BUFFER, idx, m_bufs[b]); } void bindUniformRange(size_t idx, GLintptr off, GLsizeiptr size, int b) { glBindBufferRange(GL_UNIFORM_BUFFER, idx, m_bufs[b], off, size); } }; ObjToken GLDataFactory::Context::newStaticBuffer(BufferUse use, const void* data, size_t stride, size_t count) { BOO_MSAN_NO_INTERCEPT return {new GLGraphicsBufferS(m_data, use, data, stride * count)}; } static void SetClampMode(GLenum target, TextureClampMode clampMode) { switch (clampMode) { case TextureClampMode::Repeat: { glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_REPEAT); break; } case TextureClampMode::ClampToWhite: { glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER); glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER); glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_BORDER); constexpr std::array color{1.f, 1.f, 1.f, 1.f}; glTexParameterfv(target, GL_TEXTURE_BORDER_COLOR, color.data()); break; } case TextureClampMode::ClampToBlack: { glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER); glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER); glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_BORDER); constexpr std::array color{0.f, 0.f, 0.f, 1.f}; glTexParameterfv(target, GL_TEXTURE_BORDER_COLOR, color.data()); break; } case TextureClampMode::ClampToEdge: { glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); break; } case TextureClampMode::ClampToEdgeNearest: { glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); break; } default: break; } } class GLTextureS : public GraphicsDataNode { friend class GLDataFactory; GLuint m_tex; TextureClampMode m_clampMode = TextureClampMode::Invalid; GLTextureS(const ObjToken& parent, size_t width, size_t height, size_t mips, TextureFormat fmt, TextureClampMode clampMode, GLint aniso, const void* data, size_t sz) : GraphicsDataNode(parent) { const uint8_t* dataIt = static_cast(data); glGenTextures(1, &m_tex); glBindTexture(GL_TEXTURE_2D, m_tex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); if (mips > 1) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, mips - 1); } else glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); if (GLEW_EXT_texture_filter_anisotropic) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, aniso); SetClampMode(GL_TEXTURE_2D, clampMode); GLenum intFormat, format; int pxPitch; bool compressed = false; switch (fmt) { case TextureFormat::RGBA8: intFormat = GL_RGBA8; format = GL_RGBA; pxPitch = 4; break; case TextureFormat::I8: intFormat = GL_R8; format = GL_RED; pxPitch = 1; break; case TextureFormat::I16: intFormat = GL_R16; format = GL_RED; pxPitch = 2; break; case TextureFormat::DXT1: intFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; compressed = true; pxPitch = 2; break; case TextureFormat::DXT3: intFormat = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; compressed = true; pxPitch = 1; break; case TextureFormat::DXT5: intFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; compressed = true; pxPitch = 1; break; case TextureFormat::BPTC: intFormat = GL_COMPRESSED_RGBA_BPTC_UNORM_ARB; compressed = true; pxPitch = 1; break; default: Log.report(logvisor::Fatal, FMT_STRING("unsupported tex format")); } if (compressed) { for (size_t i = 0; i < mips; ++i) { size_t dataSz = width * height / pxPitch; glCompressedTexImage2D(GL_TEXTURE_2D, i, intFormat, width, height, 0, dataSz, dataIt); dataIt += dataSz; if (width > 1) width /= 2; if (height > 1) height /= 2; } } else { GLenum compType = intFormat == GL_R16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE; for (size_t i = 0; i < mips; ++i) { glTexImage2D(GL_TEXTURE_2D, i, intFormat, width, height, 0, format, compType, dataIt); dataIt += width * height * pxPitch; if (width > 1) width /= 2; if (height > 1) height /= 2; } } } public: ~GLTextureS() override { glDeleteTextures(1, &m_tex); } void setClampMode(TextureClampMode mode) override { if (m_clampMode == mode) return; m_clampMode = mode; glBindTexture(GL_TEXTURE_2D, m_tex); SetClampMode(GL_TEXTURE_2D, mode); } void bind(size_t idx) const { glActiveTexture(GL_TEXTURE0 + idx); glBindTexture(GL_TEXTURE_2D, m_tex); } }; class GLTextureSA : public GraphicsDataNode { friend class GLDataFactory; GLuint m_tex; TextureClampMode m_clampMode = TextureClampMode::Invalid; GLTextureSA(const ObjToken& parent, size_t width, size_t height, size_t layers, size_t mips, TextureFormat fmt, TextureClampMode clampMode, GLint aniso, const void* data, size_t sz) : GraphicsDataNode(parent) { const uint8_t* dataIt = static_cast(data); glGenTextures(1, &m_tex); glBindTexture(GL_TEXTURE_2D_ARRAY, m_tex); glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR); if (mips > 1) { glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAX_LEVEL, mips - 1); } else glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR); if (GLEW_EXT_texture_filter_anisotropic) glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAX_ANISOTROPY_EXT, aniso); SetClampMode(GL_TEXTURE_2D_ARRAY, clampMode); GLenum intFormat = 0, format = 0; int pxPitch = 0; switch (fmt) { case TextureFormat::RGBA8: intFormat = GL_RGBA8; format = GL_RGBA; pxPitch = 4; break; case TextureFormat::I8: intFormat = GL_R8; format = GL_RED; pxPitch = 1; break; case TextureFormat::I16: intFormat = GL_R16; format = GL_RED; pxPitch = 2; break; default: Log.report(logvisor::Fatal, FMT_STRING("unsupported tex format")); } GLenum compType = intFormat == GL_R16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE; for (size_t i = 0; i < mips; ++i) { glTexImage3D(GL_TEXTURE_2D_ARRAY, i, intFormat, width, height, layers, 0, format, compType, dataIt); dataIt += width * height * layers * pxPitch; if (width > 1) width /= 2; if (height > 1) height /= 2; } } public: ~GLTextureSA() override { glDeleteTextures(1, &m_tex); } void setClampMode(TextureClampMode mode) override { if (m_clampMode == mode) return; m_clampMode = mode; glBindTexture(GL_TEXTURE_2D_ARRAY, m_tex); SetClampMode(GL_TEXTURE_2D_ARRAY, mode); } void bind(size_t idx) const { glActiveTexture(GL_TEXTURE0 + idx); glBindTexture(GL_TEXTURE_2D_ARRAY, m_tex); } }; class GLTextureD : public GraphicsDataNode { friend class GLDataFactory; friend struct GLCommandQueue; std::array m_texs{}; std::unique_ptr m_cpuBuf; size_t m_cpuSz = 0; GLenum m_intFormat, m_format; size_t m_width = 0; size_t m_height = 0; int m_validMask = 0; TextureClampMode m_clampMode = TextureClampMode::Invalid; GLTextureD(const ObjToken& parent, size_t width, size_t height, TextureFormat fmt, TextureClampMode clampMode) : GraphicsDataNode(parent), m_width(width), m_height(height) { int pxPitch = 4; switch (fmt) { case TextureFormat::RGBA8: m_intFormat = GL_RGBA8; m_format = GL_RGBA; pxPitch = 4; break; case TextureFormat::I8: m_intFormat = GL_R8; m_format = GL_RED; pxPitch = 1; break; case TextureFormat::I16: m_intFormat = GL_R16; m_format = GL_RED; pxPitch = 2; break; default: Log.report(logvisor::Fatal, FMT_STRING("unsupported tex format")); } m_cpuSz = width * height * pxPitch; m_cpuBuf.reset(new uint8_t[m_cpuSz]); const GLenum compType = m_intFormat == GL_R16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE; glGenTextures(GLsizei(m_texs.size()), m_texs.data()); for (const GLuint tex : m_texs) { glBindTexture(GL_TEXTURE_2D, tex); glTexImage2D(GL_TEXTURE_2D, 0, m_intFormat, width, height, 0, m_format, compType, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); SetClampMode(GL_TEXTURE_2D, clampMode); } } public: ~GLTextureD() override { glDeleteTextures(GLsizei(m_texs.size()), m_texs.data()); } void update(int b) { int slot = 1 << b; if ((slot & m_validMask) == 0) { glBindTexture(GL_TEXTURE_2D, m_texs[b]); GLenum compType = m_intFormat == GL_R16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE; glTexImage2D(GL_TEXTURE_2D, 0, m_intFormat, m_width, m_height, 0, m_format, compType, m_cpuBuf.get()); m_validMask |= slot; } } void load(const void* data, size_t sz) override { size_t bufSz = std::min(sz, m_cpuSz); memcpy(m_cpuBuf.get(), data, bufSz); m_validMask = 0; } void* map(size_t sz) override { if (sz > m_cpuSz) return nullptr; return m_cpuBuf.get(); } void unmap() override { m_validMask = 0; } void setClampMode(TextureClampMode mode) override { if (m_clampMode == mode) { return; } m_clampMode = mode; for (const GLuint tex : m_texs) { glBindTexture(GL_TEXTURE_2D, tex); SetClampMode(GL_TEXTURE_2D, mode); } } void bind(size_t idx, int b) { glActiveTexture(GL_TEXTURE0 + idx); glBindTexture(GL_TEXTURE_2D, m_texs[b]); } }; #define MAX_BIND_TEXS 4 class GLTextureR : public GraphicsDataNode { friend class GLDataFactory; friend struct GLCommandQueue; struct GLCommandQueue* m_q; std::array m_texs{}; std::array, 2> m_bindTexs{}; std::array, 2> m_bindFBOs{}; GLuint m_fbo = 0; size_t m_width = 0; size_t m_height = 0; size_t m_samples = 0; GLenum m_colorFormat; size_t m_colorBindCount; size_t m_depthBindCount; GLTextureR(const ObjToken& parent, GLCommandQueue* q, size_t width, size_t height, size_t samples, GLenum colorFormat, TextureClampMode clampMode, size_t colorBindCount, size_t depthBindCount); public: ~GLTextureR() override { glDeleteTextures(GLsizei(m_texs.size()), m_texs.data()); glDeleteTextures(MAX_BIND_TEXS * 2, m_bindTexs[0].data()); if (m_samples > 1) glDeleteFramebuffers(MAX_BIND_TEXS * 2, m_bindFBOs[0].data()); glDeleteFramebuffers(1, &m_fbo); } void setClampMode(TextureClampMode mode) override { for (size_t i = 0; i < m_colorBindCount; ++i) { glBindTexture(GL_TEXTURE_2D, m_bindTexs[0][i]); SetClampMode(GL_TEXTURE_2D, mode); } for (size_t i = 0; i < m_depthBindCount; ++i) { glBindTexture(GL_TEXTURE_2D, m_bindTexs[1][i]); SetClampMode(GL_TEXTURE_2D, mode); } } void bind(size_t idx, int bindIdx, bool depth) const { glActiveTexture(GL_TEXTURE0 + idx); glBindTexture(GL_TEXTURE_2D, m_bindTexs[depth][bindIdx]); } void resize(size_t width, size_t height) { m_width = width; m_height = height; GLenum compType = m_colorFormat == GL_RGBA16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE; if (m_samples > 1) { glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_texs[0]); glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, m_samples, m_colorFormat, width, height, GL_FALSE); glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_texs[1]); glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, m_samples, GL_DEPTH_COMPONENT32F, width, height, GL_FALSE); } else { glBindTexture(GL_TEXTURE_2D, m_texs[0]); glTexImage2D(GL_TEXTURE_2D, 0, m_colorFormat, width, height, 0, GL_RGBA, compType, nullptr); glBindTexture(GL_TEXTURE_2D, m_texs[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32F, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr); glBindFramebuffer(GL_FRAMEBUFFER, m_fbo); glDepthMask(GL_TRUE); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); } for (const GLuint bindTex : m_bindTexs[0]) { if (bindTex == 0) { continue; } glBindTexture(GL_TEXTURE_2D, bindTex); glTexImage2D(GL_TEXTURE_2D, 0, m_colorFormat, width, height, 0, GL_RGBA, compType, nullptr); } for (const GLuint bindTex : m_bindTexs[1]) { if (bindTex == 0) { continue; } glBindTexture(GL_TEXTURE_2D, bindTex); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32F, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr); } } }; class GLTextureCubeR : public GraphicsDataNode { friend class GLDataFactory; friend struct GLCommandQueue; struct GLCommandQueue* m_q; std::array m_texs{}; std::array m_fbos{}; size_t m_width = 0; size_t m_mipCount = 0; GLenum m_colorFormat; GLTextureCubeR(const ObjToken& parent, GLCommandQueue* q, size_t width, size_t mips, GLenum colorFormat); public: ~GLTextureCubeR() override { glDeleteTextures(GLsizei(m_texs.size()), m_texs.data()); glDeleteFramebuffers(GLsizei(m_fbos.size()), m_fbos.data()); } void setClampMode(TextureClampMode mode) override {} void bind(size_t idx) const { glActiveTexture(GL_TEXTURE0 + idx); glBindTexture(GL_TEXTURE_CUBE_MAP, m_texs[0]); } void _allocateTextures() { GLenum compType = m_colorFormat == GL_RGBA16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE; glBindTexture(GL_TEXTURE_CUBE_MAP, m_texs[0]); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, m_mipCount - 1); for (size_t f = 0; f < m_fbos.size(); ++f) { size_t tmpWidth = m_width; for (size_t m = 0; m < m_mipCount; ++m) { glTexImage2D(GLenum(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f), m, m_colorFormat, tmpWidth, tmpWidth, 0, GL_RGBA, compType, nullptr); tmpWidth >>= 1; } } glBindTexture(GL_TEXTURE_CUBE_MAP, m_texs[1]); for (size_t f = 0; f < m_fbos.size(); ++f) { glTexImage2D(GLenum(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f), 0, GL_DEPTH_COMPONENT32F, m_width, m_width, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr); } } void resize(size_t width, size_t mips) { m_width = width; m_mipCount = mips; _allocateTextures(); for (const GLuint fbo : m_fbos) { glBindFramebuffer(GL_FRAMEBUFFER, fbo); glDepthMask(GL_TRUE); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); } } }; ObjToken GLDataFactory::Context::newStaticTexture(size_t width, size_t height, size_t mips, TextureFormat fmt, TextureClampMode clampMode, const void* data, size_t sz) { GLDataFactoryImpl& factory = static_cast(m_parent); BOO_MSAN_NO_INTERCEPT return {new GLTextureS(m_data, width, height, mips, fmt, clampMode, factory.m_glCtx->m_anisotropy, data, sz)}; } ObjToken GLDataFactory::Context::newStaticArrayTexture(size_t width, size_t height, size_t layers, size_t mips, TextureFormat fmt, TextureClampMode clampMode, const void* data, size_t sz) { GLDataFactoryImpl& factory = static_cast(m_parent); BOO_MSAN_NO_INTERCEPT return { new GLTextureSA(m_data, width, height, layers, mips, fmt, clampMode, factory.m_glCtx->m_anisotropy, data, sz)}; } constexpr std::array PRIMITIVE_TABLE{ GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_PATCHES, }; constexpr std::array BLEND_FACTOR_TABLE{ GL_ZERO, GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, GL_SRC1_COLOR, GL_ONE_MINUS_SRC1_COLOR, }; constexpr std::array SHADER_STAGE_TABLE{ 0, GL_VERTEX_SHADER, GL_FRAGMENT_SHADER, GL_GEOMETRY_SHADER, GL_TESS_CONTROL_SHADER, GL_TESS_EVALUATION_SHADER, }; class GLShaderStage : public GraphicsDataNode { friend class GLDataFactory; GLuint m_shad = 0; std::vector> m_texNames; std::vector> m_blockNames; static constexpr std::array ShaderTypes{ EShLangVertex, EShLangVertex, EShLangFragment, EShLangGeometry, EShLangTessControl, EShLangTessEvaluation, }; /* Use glslang's reflection API to pull out uniform indices from Vulkan * version of shader. Aids in glGetUniformBlockIndex and glGetUniformLocation calls */ void BuildNameLists(const char* source, PipelineStage stage) { EShLanguage lang = ShaderTypes[int(stage)]; const EShMessages messages = EShMessages(EShMsgSpvRules | EShMsgVulkanRules); glslang::TShader shader(lang); shader.setStrings(&source, 1); if (!shader.parse(&glslang::DefaultTBuiltInResource, 110, false, messages)) { fmt::print(FMT_STRING("{}\n"), source); Log.report(logvisor::Fatal, FMT_STRING("unable to compile shader\n{}"), shader.getInfoLog()); } glslang::TProgram prog; prog.addShader(&shader); if (!prog.link(messages)) { fmt::print(FMT_STRING("{}\n"), source); Log.report(logvisor::Fatal, FMT_STRING("unable to link shader program\n{}"), prog.getInfoLog()); } prog.buildReflection(); int count = prog.getNumLiveUniformVariables(); for (int i = 0; i < count; ++i) { const glslang::TType* tp = prog.getUniformTType(i); if (tp->getBasicType() != glslang::TBasicType::EbtSampler) continue; const auto& qual = tp->getQualifier(); if (!qual.hasBinding()) Log.report(logvisor::Fatal, FMT_STRING("shader uniform {} does not have layout binding"), prog.getUniformName(i)); m_texNames.emplace_back(std::make_pair(prog.getUniformName(i), qual.layoutBinding - BOO_GLSL_MAX_UNIFORM_COUNT)); } count = prog.getNumLiveUniformBlocks(); m_blockNames.reserve(count); for (int i = 0; i < count; ++i) { const glslang::TType* tp = prog.getUniformBlockTType(i); const auto& qual = tp->getQualifier(); if (!qual.hasBinding()) Log.report(logvisor::Fatal, FMT_STRING("shader uniform {} does not have layout binding"), prog.getUniformBlockName(i)); m_blockNames.emplace_back(std::make_pair(prog.getUniformBlockName(i), qual.layoutBinding)); } } GLShaderStage(const ObjToken& parent, const char* source, PipelineStage stage) : GraphicsDataNode(parent) { BuildNameLists(source, stage); m_shad = glCreateShader(SHADER_STAGE_TABLE[int(stage)]); if (!m_shad) { Log.report(logvisor::Fatal, FMT_STRING("unable to create shader")); return; } glShaderSource(m_shad, 1, &source, nullptr); glCompileShader(m_shad); GLint status = GL_FALSE; glGetShaderiv(m_shad, GL_COMPILE_STATUS, &status); if (status != GL_TRUE) { GLint logLen; glGetShaderiv(m_shad, GL_INFO_LOG_LENGTH, &logLen); std::unique_ptr log(new char[logLen]); glGetShaderInfoLog(m_shad, logLen, nullptr, log.get()); Log.report(logvisor::Fatal, FMT_STRING("unable to compile source\n{}\n{}\n"), log.get(), source); return; } } public: ~GLShaderStage() override { if (m_shad) glDeleteShader(m_shad); } GLuint getShader() const { return m_shad; } const std::vector>& getTexNames() const { return m_texNames; } const std::vector>& getBlockNames() const { return m_blockNames; } }; class GLShaderPipeline : public GraphicsDataNode { protected: friend class GLDataFactory; friend struct GLCommandQueue; friend struct GLShaderDataBinding; mutable ObjToken m_vertex; mutable ObjToken m_fragment; mutable ObjToken m_geometry; mutable ObjToken m_control; mutable ObjToken m_evaluation; std::vector m_elements; size_t baseVert = 0; size_t baseInst = 0; mutable GLuint m_prog = 0; GLenum m_sfactor = GL_ONE; GLenum m_dfactor = GL_ZERO; GLenum m_drawPrim = GL_TRIANGLES; ZTest m_depthTest = ZTest::LEqual; bool m_depthWrite = true; bool m_colorWrite = true; bool m_alphaWrite = true; bool m_subtractBlend = false; bool m_overwriteAlpha = false; CullMode m_culling{}; uint32_t m_patchSize = 0; mutable std::array m_uniLocs{}; GLShaderPipeline(const ObjToken& parent, ObjToken vertex, ObjToken fragment, ObjToken geometry, ObjToken control, ObjToken evaluation, const VertexFormatInfo& vtxFmt, const AdditionalPipelineInfo& info) : GraphicsDataNode(parent) { m_uniLocs.fill(-1); if (info.srcFac == BlendFactor::Subtract || info.dstFac == BlendFactor::Subtract) { m_sfactor = GL_SRC_ALPHA; m_dfactor = GL_ONE; m_subtractBlend = true; } else { m_sfactor = BLEND_FACTOR_TABLE[int(info.srcFac)]; m_dfactor = BLEND_FACTOR_TABLE[int(info.dstFac)]; m_subtractBlend = false; } m_depthTest = info.depthTest; m_depthWrite = info.depthWrite; m_colorWrite = info.colorWrite; m_alphaWrite = info.alphaWrite; m_overwriteAlpha = info.overwriteAlpha; m_culling = info.culling; m_drawPrim = PRIMITIVE_TABLE[int(info.prim)]; m_patchSize = info.patchSize; m_vertex = vertex; m_fragment = fragment; m_geometry = geometry; m_control = control; m_evaluation = evaluation; if (control && evaluation) m_drawPrim = GL_PATCHES; m_elements.reserve(vtxFmt.elementCount); for (size_t i = 0; i < vtxFmt.elementCount; ++i) m_elements.push_back(vtxFmt.elements[i]); } public: ~GLShaderPipeline() override { if (m_prog) glDeleteProgram(m_prog); } GLuint bind() const { if (!m_prog) { m_prog = glCreateProgram(); if (!m_prog) { Log.report(logvisor::Error, FMT_STRING("unable to create shader program")); return 0; } if (m_vertex) glAttachShader(m_prog, m_vertex.cast()->getShader()); if (m_fragment) glAttachShader(m_prog, m_fragment.cast()->getShader()); if (m_geometry) glAttachShader(m_prog, m_geometry.cast()->getShader()); if (m_control) glAttachShader(m_prog, m_control.cast()->getShader()); if (m_evaluation) glAttachShader(m_prog, m_evaluation.cast()->getShader()); glLinkProgram(m_prog); if (m_vertex) glDetachShader(m_prog, m_vertex.cast()->getShader()); if (m_fragment) glDetachShader(m_prog, m_fragment.cast()->getShader()); if (m_geometry) glDetachShader(m_prog, m_geometry.cast()->getShader()); if (m_control) glDetachShader(m_prog, m_control.cast()->getShader()); if (m_evaluation) glDetachShader(m_prog, m_evaluation.cast()->getShader()); GLint status = GL_FALSE; glGetProgramiv(m_prog, GL_LINK_STATUS, &status); if (status != GL_TRUE) { GLint logLen; glGetProgramiv(m_prog, GL_INFO_LOG_LENGTH, &logLen); std::unique_ptr log(new char[logLen]); glGetProgramInfoLog(m_prog, logLen, nullptr, log.get()); Log.report(logvisor::Fatal, FMT_STRING("unable to link shader program\n{}\n"), log.get()); return 0; } glUseProgram(m_prog); for (const auto& shader : {m_vertex, m_fragment, m_geometry, m_control, m_evaluation}) { if (const GLShaderStage* stage = shader.cast()) { for (const auto& name : stage->getBlockNames()) { GLint uniLoc = glGetUniformBlockIndex(m_prog, name.first.c_str()); // if (uniLoc < 0) { // Log.report(logvisor::Warning, FMT_STRING("unable to find uniform block '{}'"), uniformBlockNames[i]); // } m_uniLocs[name.second] = uniLoc; } for (const auto& name : stage->getTexNames()) { GLint texLoc = glGetUniformLocation(m_prog, name.first.c_str()); if (texLoc < 0) { // Log.report(logvisor::Warning, FMT_STRING("unable to find sampler variable '{}'"), texNames[i]); } else { glUniform1i(texLoc, name.second); } } } } m_vertex.reset(); m_fragment.reset(); m_geometry.reset(); m_control.reset(); m_evaluation.reset(); } else { glUseProgram(m_prog); } if (m_dfactor != GL_ZERO) { glEnable(GL_BLEND); if (m_overwriteAlpha) glBlendFuncSeparate(m_sfactor, m_dfactor, GL_ONE, GL_ZERO); else glBlendFuncSeparate(m_sfactor, m_dfactor, m_sfactor, m_dfactor); if (m_subtractBlend) glBlendEquationSeparate(GL_FUNC_REVERSE_SUBTRACT, m_overwriteAlpha ? GL_FUNC_ADD : GL_FUNC_REVERSE_SUBTRACT); else glBlendEquation(GL_FUNC_ADD); } else glDisable(GL_BLEND); if (m_depthTest != ZTest::None) { glEnable(GL_DEPTH_TEST); switch (m_depthTest) { case ZTest::LEqual: default: glDepthFunc(GL_LEQUAL); break; case ZTest::Greater: glDepthFunc(GL_GREATER); break; case ZTest::GEqual: glDepthFunc(GL_GEQUAL); break; case ZTest::Equal: glDepthFunc(GL_EQUAL); break; } } else glDisable(GL_DEPTH_TEST); glDepthMask(m_depthWrite); glColorMask(m_colorWrite, m_colorWrite, m_colorWrite, m_alphaWrite); if (m_culling != CullMode::None) { glEnable(GL_CULL_FACE); glCullFace(m_culling == CullMode::Backface ? GL_BACK : GL_FRONT); } else glDisable(GL_CULL_FACE); if (m_patchSize) glPatchParameteri(GL_PATCH_VERTICES, m_patchSize); return m_prog; } bool isReady() const override { return true; } }; ObjToken GLDataFactory::Context::newShaderStage(const uint8_t* data, size_t size, PipelineStage stage) { const auto& factory = static_cast(m_parent); if (stage == PipelineStage::Control || stage == PipelineStage::Evaluation) { if (!factory.m_hasTessellation) Log.report(logvisor::Fatal, FMT_STRING("Device does not support tessellation shaders")); } BOO_MSAN_NO_INTERCEPT return {new GLShaderStage(m_data, reinterpret_cast(data), stage)}; } ObjToken GLDataFactory::Context::newShaderPipeline( ObjToken vertex, ObjToken fragment, ObjToken geometry, ObjToken control, ObjToken evaluation, const VertexFormatInfo& vtxFmt, const AdditionalPipelineInfo& additionalInfo, bool asynchronous) { const auto& factory = static_cast(m_parent); if (control || evaluation) { if (!factory.m_hasTessellation) Log.report(logvisor::Fatal, FMT_STRING("Device does not support tessellation shaders")); if (additionalInfo.patchSize > factory.m_maxPatchSize) Log.report(logvisor::Fatal, FMT_STRING("Device supports {} patch vertices, {} requested"), int(factory.m_maxPatchSize), int(additionalInfo.patchSize)); } BOO_MSAN_NO_INTERCEPT return {new GLShaderPipeline(m_data, vertex, fragment, geometry, control, evaluation, vtxFmt, additionalInfo)}; } struct GLShaderDataBinding : GraphicsDataNode { ObjToken m_pipeline; ObjToken m_vbo; ObjToken m_instVbo; ObjToken m_ibo; std::vector> m_ubufs; std::vector> m_ubufOffs; struct BoundTex { ObjToken tex; int idx; bool depth; }; std::vector m_texs; size_t m_baseVert; size_t m_baseInst; std::array m_vao = {}; GLCommandQueue* m_q; GLShaderDataBinding(const ObjToken& d, const ObjToken& pipeline, const ObjToken& vbo, const ObjToken& instVbo, const ObjToken& ibo, size_t ubufCount, const ObjToken* ubufs, const size_t* ubufOffs, const size_t* ubufSizes, size_t texCount, const ObjToken* texs, const int* bindTexIdx, const bool* depthBind, size_t baseVert, size_t baseInst, GLCommandQueue* q); ~GLShaderDataBinding() override; void bind(int b) const { GLShaderPipeline& pipeline = *m_pipeline.cast(); GLuint prog = pipeline.bind(); glBindVertexArray(m_vao[b]); if (m_ubufOffs.size()) { for (size_t i = 0; i < m_ubufs.size(); ++i) { GLint loc = pipeline.m_uniLocs[i]; if (loc < 0) continue; IGraphicsBuffer* ubuf = m_ubufs[i].get(); const std::pair& offset = m_ubufOffs[i]; if (ubuf->dynamic()) static_cast*>(ubuf)->bindUniformRange(i, offset.first, offset.second, b); else static_cast(ubuf)->bindUniformRange(i, offset.first, offset.second); glUniformBlockBinding(prog, loc, i); } } else { for (size_t i = 0; i < m_ubufs.size(); ++i) { GLint loc = pipeline.m_uniLocs[i]; if (loc < 0) continue; IGraphicsBuffer* ubuf = m_ubufs[i].get(); if (ubuf->dynamic()) static_cast*>(ubuf)->bindUniform(i, b); else static_cast(ubuf)->bindUniform(i); glUniformBlockBinding(prog, loc, i); } } for (size_t i = 0; i < m_texs.size(); ++i) { const BoundTex& tex = m_texs[i]; if (tex.tex) { switch (tex.tex->type()) { case TextureType::Dynamic: tex.tex.cast()->bind(i, b); break; case TextureType::Static: tex.tex.cast()->bind(i); break; case TextureType::StaticArray: tex.tex.cast()->bind(i); break; case TextureType::Render: tex.tex.cast()->bind(i, tex.idx, tex.depth); break; case TextureType::CubeRender: tex.tex.cast()->bind(i); break; default: break; } } } } }; GLDataFactory::Context::Context(GLDataFactory& parent __BooTraceArgs) : m_parent(parent), m_data(new BaseGraphicsData(static_cast(parent) __BooTraceArgsUse)) {} GLDataFactory::Context::~Context() {} void GLDataFactoryImpl::commitTransaction(const FactoryCommitFunc& trans __BooTraceArgs) { GLDataFactory::Context ctx(*this __BooTraceArgsUse); if (!trans(ctx)) return; /* Let's go ahead and flush to ensure our data gets to the GPU While this isn't strictly required, some drivers might behave differently */ // glFlush(); } ObjToken GLDataFactoryImpl::newPoolBuffer(BufferUse use, size_t stride, size_t count __BooTraceArgs) { BOO_MSAN_NO_INTERCEPT ObjToken pool(new BaseGraphicsPool(*this __BooTraceArgsUse)); return {new GLGraphicsBufferD(pool, use, stride * count)}; } constexpr std::array SEMANTIC_COUNT_TABLE{ 0, 3, 4, 3, 4, 4, 4, 2, 4, 4, 4, }; constexpr std::array SEMANTIC_SIZE_TABLE{ 0, 12, 16, 12, 16, 16, 4, 8, 16, 16, 16, }; constexpr std::array SEMANTIC_TYPE_TABLE{ GL_INVALID_ENUM, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_UNSIGNED_BYTE, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT, }; struct GLCommandQueue final : IGraphicsCommandQueue { Platform platform() const override { return IGraphicsDataFactory::Platform::OpenGL; } const SystemChar* platformName() const override { return _SYS_STR("OpenGL"); } IGraphicsContext* m_parent = nullptr; GLContext* m_glCtx = nullptr; std::mutex m_mt; std::condition_variable m_cv; std::mutex m_initmt; std::condition_variable m_initcv; std::recursive_mutex m_fmtMt; std::thread m_thr; struct Command { enum class Op { SetShaderDataBinding, SetRenderTarget, SetCubeRenderTarget, SetViewport, SetScissor, SetClearColor, ClearTarget, Draw, DrawIndexed, DrawInstances, DrawInstancesIndexed, ResolveBindTexture, GenerateMips, Present, #ifdef BOO_GRAPHICS_DEBUG_GROUPS PushDebugGroup, PopDebugGroup, #endif } m_op; union { struct { SWindowRect rect; float znear, zfar; } viewport; std::array rgba; GLbitfield flags; struct { size_t start; size_t count; size_t instCount; size_t startInst; }; }; #ifdef BOO_GRAPHICS_DEBUG_GROUPS std::string name; #endif ObjToken binding; ObjToken target; ObjToken source; ObjToken resolveTex; int bindIdx; bool resolveColor : 1; bool resolveDepth : 1; bool clearDepth : 1; Command(Op op) : m_op(op) {} Command(const Command&) = delete; Command& operator=(const Command&) = delete; Command(Command&&) = default; Command& operator=(Command&&) = default; }; std::array, 3> m_cmdBufs; int m_fillBuf = 0; int m_completeBuf = 0; int m_drawBuf = 0; bool m_running = true; struct RenderTextureResize { ObjToken tex; size_t width; size_t height; }; struct CubeRenderTextureResize { ObjToken tex; size_t width, mips; }; /* These members are locked for multithreaded access */ std::vector m_pendingResizes; std::vector m_pendingCubeResizes; std::vector> m_pendingPosts1; std::vector> m_pendingPosts2; std::vector> m_pendingFmtAdds; std::vector> m_pendingFmtDels; std::vector> m_pendingFboAdds; std::vector> m_pendingCubeFboAdds; static void ConfigureVertexFormat(GLShaderDataBinding* fmt) { glGenVertexArrays(GLsizei(fmt->m_vao.size()), fmt->m_vao.data()); size_t stride = 0; size_t instStride = 0; const auto* const pipeline = fmt->m_pipeline.cast(); for (const auto desc : pipeline->m_elements) { const size_t size = SEMANTIC_SIZE_TABLE[int(desc.semantic & VertexSemantic::SemanticMask)]; if (True(desc.semantic & VertexSemantic::Instanced)) { instStride += size; } else { stride += size; } } for (size_t b = 0; b < fmt->m_vao.size(); ++b) { size_t offset = fmt->m_baseVert * stride; size_t instOffset = fmt->m_baseInst * instStride; glBindVertexArray(fmt->m_vao[b]); IGraphicsBuffer* lastVBO = nullptr; IGraphicsBuffer* lastEBO = nullptr; for (size_t i = 0; i < pipeline->m_elements.size(); ++i) { const VertexElementDescriptor& desc = pipeline->m_elements[i]; IGraphicsBuffer* vbo = True(desc.semantic & VertexSemantic::Instanced) ? fmt->m_instVbo.get() : fmt->m_vbo.get(); IGraphicsBuffer* ebo = fmt->m_ibo.get(); if (vbo != lastVBO) { lastVBO = vbo; if (lastVBO->dynamic()) static_cast*>(lastVBO)->bindVertex(int(b)); else static_cast(lastVBO)->bindVertex(); } if (ebo != lastEBO) { lastEBO = ebo; if (lastEBO->dynamic()) static_cast*>(lastEBO)->bindIndex(int(b)); else static_cast(lastEBO)->bindIndex(); } glEnableVertexAttribArray(i); const int maskedSem = int(desc.semantic & VertexSemantic::SemanticMask); const auto semanticCount = SEMANTIC_COUNT_TABLE[maskedSem]; const auto semanticType = SEMANTIC_TYPE_TABLE[maskedSem]; const auto semanticSize = SEMANTIC_SIZE_TABLE[maskedSem]; if (True(desc.semantic & VertexSemantic::Instanced)) { glVertexAttribPointer(i, semanticCount, semanticType, GL_TRUE, instStride, (void*)instOffset); glVertexAttribDivisor(i, 1); instOffset += semanticSize; } else { glVertexAttribPointer(i, semanticCount, semanticType, GL_TRUE, stride, (void*)offset); offset += semanticSize; } } } } static void ConfigureFBO(GLTextureR* tex) { glGenFramebuffers(1, &tex->m_fbo); glBindFramebuffer(GL_FRAMEBUFFER, tex->m_fbo); GLenum target = tex->m_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D; glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, target, tex->m_texs[0], 0); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, target, tex->m_texs[1], 0); if (tex->m_samples > 1) { if (tex->m_colorBindCount) { glGenFramebuffers(tex->m_colorBindCount, tex->m_bindFBOs[0].data()); for (size_t i = 0; i < tex->m_colorBindCount; ++i) { glBindFramebuffer(GL_FRAMEBUFFER, tex->m_bindFBOs[0][i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tex->m_bindTexs[0][i], 0); } } if (tex->m_depthBindCount) { glGenFramebuffers(tex->m_depthBindCount, tex->m_bindFBOs[1].data()); for (size_t i = 0; i < tex->m_depthBindCount; ++i) { glBindFramebuffer(GL_FRAMEBUFFER, tex->m_bindFBOs[1][i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, tex->m_bindTexs[1][i], 0); } } } } static void ConfigureFBO(GLTextureCubeR* tex) { glGenFramebuffers(GLsizei(tex->m_fbos.size()), tex->m_fbos.data()); for (size_t i = 0; i < tex->m_fbos.size(); ++i) { glBindFramebuffer(GL_FRAMEBUFFER, tex->m_fbos[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GLenum(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i), tex->m_texs[0], 0); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GLenum(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i), tex->m_texs[1], 0); } } static void RenderingWorker(GLCommandQueue* self) { BOO_MSAN_NO_INTERCEPT #if _WIN32 std::string thrName = WCSTMBS(APP->getFriendlyName().data()) + " Render"; #else std::string thrName = std::string(APP->getFriendlyName()) + " Render"; #endif logvisor::RegisterThreadName(thrName.c_str()); GLDataFactoryImpl* dataFactory = static_cast(self->m_parent->getDataFactory()); { std::unique_lock lk(self->m_initmt); self->m_parent->makeCurrent(); const GLubyte* version = glGetString(GL_VERSION); Log.report(logvisor::Info, FMT_STRING("OpenGL Version: {}"), version); self->m_parent->postInit(); glClearColor(0.f, 0.f, 0.f, 0.f); if (GLEW_EXT_texture_filter_anisotropic) { GLint maxAniso = 0; glGetIntegerv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAniso); self->m_glCtx->m_anisotropy = std::min(uint32_t(maxAniso), self->m_glCtx->m_anisotropy); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, maxAniso); } GLint maxSamples = 0; glGetIntegerv(GL_MAX_SAMPLES, &maxSamples); self->m_glCtx->m_sampleCount = flp2(std::min(uint32_t(maxSamples), std::max(uint32_t(1), self->m_glCtx->m_sampleCount)) - 1); glEnable(GL_PRIMITIVE_RESTART); glPrimitiveRestartIndex(0xffffffff); dataFactory->SetupGammaResources(); } self->m_initcv.notify_one(); while (self->m_running) { std::vector> posts; { std::unique_lock lk(self->m_mt); self->m_cv.wait(lk); if (!self->m_running) break; self->m_drawBuf = self->m_completeBuf; glBindFramebuffer(GL_FRAMEBUFFER, 0); if (self->m_pendingFboAdds.size()) { for (ObjToken& tex : self->m_pendingFboAdds) ConfigureFBO(tex.cast()); self->m_pendingFboAdds.clear(); } if (self->m_pendingCubeFboAdds.size()) { for (ObjToken& tex : self->m_pendingCubeFboAdds) ConfigureFBO(tex.cast()); self->m_pendingCubeFboAdds.clear(); } if (self->m_pendingResizes.size()) { for (const RenderTextureResize& resize : self->m_pendingResizes) resize.tex.cast()->resize(resize.width, resize.height); self->m_pendingResizes.clear(); } if (self->m_pendingCubeResizes.size()) { for (const CubeRenderTextureResize& resize : self->m_pendingCubeResizes) resize.tex.cast()->resize(resize.width, resize.mips); self->m_pendingCubeResizes.clear(); } std::vector> pendingFmtAdds; std::vector> pendingFmtDels; { std::lock_guard fmtLk(self->m_fmtMt); pendingFmtAdds.swap(self->m_pendingFmtAdds); pendingFmtDels.swap(self->m_pendingFmtDels); } if (pendingFmtAdds.size()) { for (ObjToken& fmt : pendingFmtAdds) ConfigureVertexFormat(fmt.cast()); pendingFmtAdds.clear(); } if (pendingFmtDels.size()) { for (const auto& v : pendingFmtDels) glDeleteVertexArrays(3, v.data()); pendingFmtDels.clear(); } if (self->m_pendingPosts2.size()) posts.swap(self->m_pendingPosts2); } std::vector& cmds = self->m_cmdBufs[self->m_drawBuf]; GLenum currentPrim = GL_TRIANGLES; GLuint curFBO = 0; for (const Command& cmd : cmds) { switch (cmd.m_op) { case Command::Op::SetShaderDataBinding: { const GLShaderDataBinding* binding = cmd.binding.cast(); binding->bind(self->m_drawBuf); currentPrim = binding->m_pipeline.cast()->m_drawPrim; break; } case Command::Op::SetRenderTarget: { const GLTextureR* tex = cmd.target.cast(); curFBO = tex ? tex->m_fbo : 0; glBindFramebuffer(GL_FRAMEBUFFER, curFBO); break; } case Command::Op::SetCubeRenderTarget: { const GLTextureCubeR* tex = cmd.target.cast(); curFBO = tex ? tex->m_fbos[cmd.bindIdx] : 0; glBindFramebuffer(GL_FRAMEBUFFER, curFBO); break; } case Command::Op::SetViewport: glViewport(cmd.viewport.rect.location[0], cmd.viewport.rect.location[1], cmd.viewport.rect.size[0], cmd.viewport.rect.size[1]); glDepthRange(cmd.viewport.znear, cmd.viewport.zfar); break; case Command::Op::SetScissor: if (cmd.viewport.rect.size[0] == 0 && cmd.viewport.rect.size[1] == 0) glDisable(GL_SCISSOR_TEST); else { glEnable(GL_SCISSOR_TEST); glScissor(cmd.viewport.rect.location[0], cmd.viewport.rect.location[1], cmd.viewport.rect.size[0], cmd.viewport.rect.size[1]); } break; case Command::Op::SetClearColor: glClearColor(cmd.rgba[0], cmd.rgba[1], cmd.rgba[2], cmd.rgba[3]); break; case Command::Op::ClearTarget: if (cmd.flags & GL_COLOR_BUFFER_BIT) glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); if (cmd.flags & GL_DEPTH_BUFFER_BIT) glDepthMask(GL_TRUE); glClear(cmd.flags); break; case Command::Op::Draw: glDrawArrays(currentPrim, cmd.start, cmd.count); break; case Command::Op::DrawIndexed: glDrawElements(currentPrim, cmd.count, GL_UNSIGNED_INT, reinterpret_cast(cmd.start * 4)); break; case Command::Op::DrawInstances: if (cmd.startInst) glDrawArraysInstancedBaseInstance(currentPrim, cmd.start, cmd.count, cmd.instCount, cmd.startInst); else glDrawArraysInstanced(currentPrim, cmd.start, cmd.count, cmd.instCount); break; case Command::Op::DrawInstancesIndexed: if (cmd.startInst) glDrawElementsInstancedBaseInstance(currentPrim, cmd.count, GL_UNSIGNED_INT, reinterpret_cast(cmd.start * 4), cmd.instCount, cmd.startInst); else glDrawElementsInstanced(currentPrim, cmd.count, GL_UNSIGNED_INT, reinterpret_cast(cmd.start * 4), cmd.instCount); break; case Command::Op::ResolveBindTexture: { const SWindowRect& rect = cmd.viewport.rect; const GLTextureR* tex = cmd.resolveTex.cast(); glBindFramebuffer(GL_READ_FRAMEBUFFER, tex->m_fbo); if (tex->m_samples <= 1) { glActiveTexture(GL_TEXTURE9); if (cmd.resolveColor && tex->m_bindTexs[0][cmd.bindIdx]) { glBindTexture(GL_TEXTURE_2D, tex->m_bindTexs[0][cmd.bindIdx]); glCopyTexSubImage2D(GL_TEXTURE_2D, 0, rect.location[0], rect.location[1], rect.location[0], rect.location[1], rect.size[0], rect.size[1]); } if (cmd.resolveDepth && tex->m_bindTexs[1][cmd.bindIdx]) { glBindTexture(GL_TEXTURE_2D, tex->m_bindTexs[1][cmd.bindIdx]); glCopyTexSubImage2D(GL_TEXTURE_2D, 0, rect.location[0], rect.location[1], rect.location[0], rect.location[1], rect.size[0], rect.size[1]); } } else { if (cmd.resolveColor && tex->m_bindTexs[0][cmd.bindIdx]) { glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tex->m_bindFBOs[0][cmd.bindIdx]); glBlitFramebuffer(rect.location[0], rect.location[1], rect.location[0] + rect.size[0], rect.location[1] + rect.size[1], rect.location[0], rect.location[1], rect.location[0] + rect.size[0], rect.location[1] + rect.size[1], GL_COLOR_BUFFER_BIT, GL_NEAREST); } if (cmd.resolveDepth && tex->m_bindTexs[1][cmd.bindIdx]) { glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tex->m_bindFBOs[1][cmd.bindIdx]); glBlitFramebuffer(rect.location[0], rect.location[1], rect.location[0] + rect.size[0], rect.location[1] + rect.size[1], rect.location[0], rect.location[1], rect.location[0] + rect.size[0], rect.location[1] + rect.size[1], GL_DEPTH_BUFFER_BIT, GL_NEAREST); } } if (cmd.clearDepth) { glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tex->m_fbo); glDepthMask(GL_TRUE); glClear(GL_DEPTH_BUFFER_BIT); } glBindFramebuffer(GL_FRAMEBUFFER, curFBO); break; } case Command::Op::GenerateMips: { if (const GLTextureCubeR* tex = cmd.target.cast()) { glBindTexture(GL_TEXTURE_CUBE_MAP, tex->m_texs[0]); glGenerateMipmap(GL_TEXTURE_CUBE_MAP); } break; } case Command::Op::Present: { if (const GLTextureR* tex = cmd.source.cast()) { #ifndef NDEBUG if (!tex->m_colorBindCount) Log.report(logvisor::Fatal, FMT_STRING("texture provided to resolveDisplay() must have at least 1 color binding")); #endif if (dataFactory->m_gamma != 1.f) { glBindFramebuffer(GL_READ_FRAMEBUFFER, tex->m_fbo); if (tex->m_samples <= 1) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, tex->m_texs[0]); } else { glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tex->m_bindFBOs[0][0]); glBlitFramebuffer(0, 0, tex->m_width, tex->m_height, 0, 0, tex->m_width, tex->m_height, GL_COLOR_BUFFER_BIT, GL_NEAREST); tex->bind(0, 0, false); } glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); dataFactory->m_gammaBinding.cast()->bind(self->m_drawBuf); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); } else { glBindFramebuffer(GL_READ_FRAMEBUFFER, tex->m_fbo); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); glBlitFramebuffer(0, 0, tex->m_width, tex->m_height, 0, 0, tex->m_width, tex->m_height, GL_COLOR_BUFFER_BIT, GL_NEAREST); #if 0 /* First cubemap dump */ int offset = 0; int voffset = 0; for (BaseGraphicsData& data : *dataFactory->m_dataHead) { if (GLTextureCubeR* cube = static_cast(data.getHead())) { for (size_t i = 0; i < cube->m_fbos.size(); ++i) { glBindFramebuffer(GL_READ_FRAMEBUFFER, cube->m_fbos[i]); glBlitFramebuffer(0, 0, cube->m_width, cube->m_width, offset, voffset, cube->m_width + offset, cube->m_width + voffset, GL_COLOR_BUFFER_BIT, GL_NEAREST); offset += cube->m_width; if (i == 2) { offset = 0; voffset += cube->m_width; } } break; } } #endif } } self->m_parent->present(); break; } #ifdef BOO_GRAPHICS_DEBUG_GROUPS case Command::Op::PushDebugGroup: { glPushDebugGroup(GL_DEBUG_SOURCE_APPLICATION, 42, -1, cmd.name.c_str()); break; } case Command::Op::PopDebugGroup: { glPopDebugGroup(); break; } #endif default: break; } } for (auto& p : posts) p(); cmds.clear(); } dataFactory->DestroyGammaResources(); std::lock_guard fmtLk(self->m_fmtMt); if (self->m_pendingFmtDels.size()) { for (const auto& v : self->m_pendingFmtDels) { glDeleteVertexArrays(GLsizei(v.size()), v.data()); } self->m_pendingFmtDels.clear(); } } GLCommandQueue(IGraphicsContext* parent, GLContext* glCtx) : m_parent(parent), m_glCtx(glCtx) {} void startRenderer() override { std::unique_lock lk(m_initmt); m_thr = std::thread(RenderingWorker, this); m_initcv.wait(lk); } void stopRenderer() override { if (m_running) { m_running = false; m_cv.notify_one(); if (m_thr.joinable()) { m_thr.join(); } for (auto& cmdBuf : m_cmdBufs) { cmdBuf.clear(); } } } ~GLCommandQueue() override { stopRenderer(); } void setShaderDataBinding(const ObjToken& binding) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::SetShaderDataBinding); cmd.binding = binding; } void setRenderTarget(const ObjToken& target) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::SetRenderTarget); cmd.target = target.get(); } void setRenderTarget(const ObjToken& target, int face) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::SetCubeRenderTarget); cmd.target = target.get(); cmd.bindIdx = face; } void setViewport(const SWindowRect& rect, float znear, float zfar) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::SetViewport); cmd.viewport.rect = rect; cmd.viewport.znear = znear; cmd.viewport.zfar = zfar; } void setScissor(const SWindowRect& rect) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::SetScissor); cmd.viewport.rect = rect; } void resizeRenderTexture(const ObjToken& tex, size_t width, size_t height) override { std::unique_lock lk(m_mt); GLTextureR* texgl = tex.cast(); m_pendingResizes.push_back({texgl, width, height}); } void resizeRenderTexture(const ObjToken& tex, size_t width, size_t mips) override { std::unique_lock lk(m_mt); GLTextureCubeR* texgl = tex.cast(); m_pendingCubeResizes.push_back({texgl, width, mips}); } void generateMipmaps(const ObjToken& tex) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::GenerateMips); cmd.target = tex.get(); } void schedulePostFrameHandler(std::function&& func) override { m_pendingPosts1.push_back(std::move(func)); } void setClearColor(const float rgba[4]) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::SetClearColor); cmd.rgba = {rgba[0], rgba[1], rgba[2], rgba[3]}; } void clearTarget(bool render = true, bool depth = true) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::ClearTarget); cmd.flags = 0; if (render) { cmd.flags |= GL_COLOR_BUFFER_BIT; } if (depth) { cmd.flags |= GL_DEPTH_BUFFER_BIT; } } void draw(size_t start, size_t count) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::Draw); cmd.start = start; cmd.count = count; } void drawIndexed(size_t start, size_t count) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::DrawIndexed); cmd.start = start; cmd.count = count; } void drawInstances(size_t start, size_t count, size_t instCount, size_t startInst) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::DrawInstances); cmd.start = start; cmd.count = count; cmd.instCount = instCount; cmd.startInst = startInst; } void drawInstancesIndexed(size_t start, size_t count, size_t instCount, size_t startInst) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::DrawInstancesIndexed); cmd.start = start; cmd.count = count; cmd.instCount = instCount; cmd.startInst = startInst; } void resolveBindTexture(const ObjToken& texture, const SWindowRect& rect, bool tlOrigin, int bindIdx, bool color, bool depth, bool clearDepth) override { const auto* const tex = texture.cast(); std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::ResolveBindTexture); cmd.resolveTex = texture; cmd.bindIdx = bindIdx; cmd.resolveColor = color; cmd.resolveDepth = depth; cmd.clearDepth = clearDepth; const SWindowRect intersectRect = rect.intersect(SWindowRect(0, 0, tex->m_width, tex->m_height)); SWindowRect& targetRect = cmd.viewport.rect; targetRect.location[0] = intersectRect.location[0]; if (tlOrigin) targetRect.location[1] = tex->m_height - intersectRect.location[1] - intersectRect.size[1]; else targetRect.location[1] = intersectRect.location[1]; targetRect.size[0] = intersectRect.size[0]; targetRect.size[1] = intersectRect.size[1]; } void resolveDisplay(const ObjToken& source) override { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::Present); cmd.source = source; } void addVertexFormat(const ObjToken& fmt) { std::unique_lock lk(m_fmtMt); m_pendingFmtAdds.push_back(fmt); } void delVertexFormat(GLShaderDataBinding* fmt) { std::unique_lock lk(m_fmtMt); m_pendingFmtDels.push_back(fmt->m_vao); } void addFBO(const ObjToken& tex) { std::unique_lock lk(m_mt); m_pendingFboAdds.push_back(tex); } void addFBO(const ObjToken& tex) { std::unique_lock lk(m_mt); m_pendingCubeFboAdds.push_back(tex); } void execute() override { BOO_MSAN_NO_INTERCEPT SCOPED_GRAPHICS_DEBUG_GROUP(this, "GLCommandQueue::execute", {1.f, 0.f, 0.f, 1.f}); std::unique_lock lk(m_mt); m_completeBuf = m_fillBuf; for (size_t i = 0; i < m_cmdBufs.size(); ++i) { if (int(i) == m_completeBuf || int(i) == m_drawBuf) continue; m_fillBuf = int(i); break; } /* Update dynamic data here */ GLDataFactoryImpl* gfxF = static_cast(m_parent->getDataFactory()); std::unique_lock datalk(gfxF->m_dataMutex); if (gfxF->m_dataHead) { for (BaseGraphicsData& d : *gfxF->m_dataHead) { if (d.m_DBufs) for (IGraphicsBufferD& b : *d.m_DBufs) static_cast&>(b).update(m_completeBuf); if (d.m_DTexs) for (ITextureD& t : *d.m_DTexs) static_cast(t).update(m_completeBuf); } } if (gfxF->m_poolHead) { for (BaseGraphicsPool& p : *gfxF->m_poolHead) { if (p.m_DBufs) for (IGraphicsBufferD& b : *p.m_DBufs) static_cast&>(b).update(m_completeBuf); } } datalk.unlock(); glFlush(); for (auto& p : m_pendingPosts1) m_pendingPosts2.push_back(std::move(p)); m_pendingPosts1.clear(); lk.unlock(); m_cv.notify_one(); m_cmdBufs[m_fillBuf].clear(); } #ifdef BOO_GRAPHICS_DEBUG_GROUPS void pushDebugGroup(const char* name, const std::array& color) override { if (GLEW_KHR_debug) { std::vector& cmds = m_cmdBufs[m_fillBuf]; auto& cmd = cmds.emplace_back(Command::Op::PushDebugGroup); cmd.name = name; } } void popDebugGroup() override { if (GLEW_KHR_debug) { std::vector& cmds = m_cmdBufs[m_fillBuf]; cmds.emplace_back(Command::Op::PopDebugGroup); } } #endif }; ObjToken GLDataFactory::Context::newDynamicBuffer(BufferUse use, size_t stride, size_t count) { BOO_MSAN_NO_INTERCEPT return {new GLGraphicsBufferD(m_data, use, stride * count)}; } ObjToken GLDataFactory::Context::newDynamicTexture(size_t width, size_t height, TextureFormat fmt, TextureClampMode clampMode) { BOO_MSAN_NO_INTERCEPT return {new GLTextureD(m_data, width, height, fmt, clampMode)}; } GLTextureR::GLTextureR(const ObjToken& parent, GLCommandQueue* q, size_t width, size_t height, size_t samples, GLenum colorFormat, TextureClampMode clampMode, size_t colorBindingCount, size_t depthBindingCount) : GraphicsDataNode(parent) , m_q(q) , m_width(width) , m_height(height) , m_samples(samples) , m_colorFormat(colorFormat) , m_colorBindCount(colorBindingCount) , m_depthBindCount(depthBindingCount) { glGenTextures(GLsizei(m_texs.size()), m_texs.data()); if (colorBindingCount) { if (colorBindingCount > MAX_BIND_TEXS) { Log.report(logvisor::Fatal, FMT_STRING("too many color bindings for render texture")); } glGenTextures(colorBindingCount, m_bindTexs[0].data()); } if (depthBindingCount) { if (depthBindingCount > MAX_BIND_TEXS) { Log.report(logvisor::Fatal, FMT_STRING("too many depth bindings for render texture")); } glGenTextures(depthBindingCount, m_bindTexs[1].data()); } GLenum compType = colorFormat == GL_RGBA16 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE; if (samples > 1) { glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_texs[0]); glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, samples, colorFormat, width, height, GL_FALSE); glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, m_texs[1]); glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, samples, GL_DEPTH_COMPONENT32F, width, height, GL_FALSE); } else { glBindTexture(GL_TEXTURE_2D, m_texs[0]); glTexImage2D(GL_TEXTURE_2D, 0, colorFormat, width, height, 0, GL_RGBA, compType, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, m_texs[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32F, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr); } for (size_t i = 0; i < colorBindingCount; ++i) { glBindTexture(GL_TEXTURE_2D, m_bindTexs[0][i]); glTexImage2D(GL_TEXTURE_2D, 0, colorFormat, width, height, 0, GL_RGBA, compType, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); SetClampMode(GL_TEXTURE_2D, clampMode); } for (size_t i = 0; i < depthBindingCount; ++i) { glBindTexture(GL_TEXTURE_2D, m_bindTexs[1][i]); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32F, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); SetClampMode(GL_TEXTURE_2D, clampMode); } m_q->addFBO(this); } ObjToken GLDataFactory::Context::newRenderTexture(size_t width, size_t height, TextureClampMode clampMode, size_t colorBindingCount, size_t depthBindingCount) { GLDataFactoryImpl& factory = static_cast(m_parent); GLCommandQueue* q = static_cast(factory.m_parent->getCommandQueue()); BOO_MSAN_NO_INTERCEPT ObjToken retval(new GLTextureR(m_data, q, width, height, factory.m_glCtx->m_sampleCount, factory.m_glCtx->m_deepColor ? GL_RGBA16 : GL_RGBA8, clampMode, colorBindingCount, depthBindingCount)); q->resizeRenderTexture(retval, width, height); return retval; } GLTextureCubeR::GLTextureCubeR(const ObjToken& parent, GLCommandQueue* q, size_t width, size_t mips, GLenum colorFormat) : GraphicsDataNode(parent) , m_q(q) , m_width(width) , m_mipCount(mips) , m_colorFormat(colorFormat) { glGenTextures(GLsizei(m_texs.size()), m_texs.data()); _allocateTextures(); glBindTexture(GL_TEXTURE_CUBE_MAP, m_texs[0]); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); m_q->addFBO(this); } ObjToken GLDataFactory::Context::newCubeRenderTexture(size_t width, size_t mips) { GLDataFactoryImpl& factory = static_cast(m_parent); GLCommandQueue* q = static_cast(factory.m_parent->getCommandQueue()); BOO_MSAN_NO_INTERCEPT ObjToken retval(new GLTextureCubeR(m_data, q, width, mips, factory.m_glCtx->m_deepColor ? GL_RGBA16 : GL_RGBA8)); return retval; } ObjToken GLDataFactory::Context::newShaderDataBinding( const ObjToken& pipeline, const ObjToken& vbo, const ObjToken& instVbo, const ObjToken& ibo, size_t ubufCount, const ObjToken* ubufs, const PipelineStage* ubufStages, const size_t* ubufOffs, const size_t* ubufSizes, size_t texCount, const ObjToken* texs, const int* texBindIdx, const bool* depthBind, size_t baseVert, size_t baseInst) { GLDataFactoryImpl& factory = static_cast(m_parent); GLCommandQueue* q = static_cast(factory.m_parent->getCommandQueue()); BOO_MSAN_NO_INTERCEPT ObjToken ret = {new GLShaderDataBinding(m_data, pipeline, vbo, instVbo, ibo, ubufCount, ubufs, ubufOffs, ubufSizes, texCount, texs, texBindIdx, depthBind, baseVert, baseInst, q)}; return ret.get(); } GLShaderDataBinding:: GLShaderDataBinding(const ObjToken& d, const ObjToken& pipeline, const ObjToken& vbo, const ObjToken& instVbo, const ObjToken& ibo, size_t ubufCount, const ObjToken* ubufs, const size_t* ubufOffs, const size_t* ubufSizes, size_t texCount, const ObjToken* texs, const int* bindTexIdx, const bool* depthBind, size_t baseVert, size_t baseInst, GLCommandQueue* q) : GraphicsDataNode(d) , m_pipeline(pipeline) , m_vbo(vbo) , m_instVbo(instVbo) , m_ibo(ibo) , m_baseVert(baseVert) , m_baseInst(baseInst) , m_q(q) { if (ubufOffs && ubufSizes) { m_ubufOffs.reserve(ubufCount); for (size_t i = 0; i < ubufCount; ++i) { #ifndef NDEBUG if (ubufOffs[i] % 256) { Log.report(logvisor::Fatal, FMT_STRING("non-256-byte-aligned uniform-offset {} provided to newShaderDataBinding"), i); } #endif m_ubufOffs.emplace_back(ubufOffs[i], (ubufSizes[i] + 255) & ~255); } } m_ubufs.reserve(ubufCount); for (size_t i = 0; i < ubufCount; ++i) { #ifndef NDEBUG if (!ubufs[i]) { Log.report(logvisor::Fatal, FMT_STRING("null uniform-buffer {} provided to newShaderDataBinding"), i); } #endif m_ubufs.push_back(ubufs[i]); } m_texs.reserve(texCount); for (size_t i = 0; i < texCount; ++i) { m_texs.push_back({texs[i], bindTexIdx ? bindTexIdx[i] : 0, depthBind ? depthBind[i] : false}); } q->addVertexFormat(this); } GLShaderDataBinding::~GLShaderDataBinding() { m_q->delVertexFormat(this); } std::unique_ptr _NewGLCommandQueue(IGraphicsContext* parent, GLContext* glCtx) { return std::make_unique(parent, glCtx); } std::unique_ptr _NewGLDataFactory(IGraphicsContext* parent, GLContext* glCtx) { return std::make_unique(parent, glCtx); } } // namespace boo