2018-10-14 20:16:21 +00:00
|
|
|
#include "athena/Types.hpp"
|
2017-10-17 05:51:53 +00:00
|
|
|
#include "OBBTreeBuilder.hpp"
|
|
|
|
#include "zeus/CTransform.hpp"
|
|
|
|
#include "DataSpec/DNAMP1/DCLN.hpp"
|
|
|
|
#include "gmm/gmm.h"
|
2017-12-29 08:08:12 +00:00
|
|
|
#include "hecl/Blender/Connection.hpp"
|
2017-10-17 05:51:53 +00:00
|
|
|
|
2018-12-08 05:30:43 +00:00
|
|
|
namespace DataSpec {
|
2017-10-17 05:51:53 +00:00
|
|
|
|
2017-12-29 08:08:12 +00:00
|
|
|
using ColMesh = hecl::blender::ColMesh;
|
2017-10-17 05:51:53 +00:00
|
|
|
|
2018-12-08 05:30:43 +00:00
|
|
|
struct FittedOBB {
|
|
|
|
zeus::CTransform xf;
|
|
|
|
zeus::CVector3f he;
|
2017-10-17 05:51:53 +00:00
|
|
|
};
|
|
|
|
|
2018-12-08 05:30:43 +00:00
|
|
|
static std::vector<int> MakeRootTriangleIndex(const ColMesh& mesh) {
|
|
|
|
std::vector<int> ret;
|
|
|
|
ret.reserve(mesh.trianges.size());
|
2019-06-12 02:05:17 +00:00
|
|
|
for (size_t i = 0; i < mesh.trianges.size(); ++i)
|
2018-12-08 05:30:43 +00:00
|
|
|
ret.push_back(i);
|
|
|
|
return ret;
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
|
|
|
|
2018-12-08 05:30:43 +00:00
|
|
|
static std::unordered_set<uint32_t> GetTriangleVerts(const ColMesh& mesh, int triIdx) {
|
|
|
|
const ColMesh::Triangle& T = mesh.trianges[triIdx];
|
|
|
|
std::unordered_set<uint32_t> verts;
|
|
|
|
verts.insert(mesh.edges[T.edges[0]].verts[0]);
|
|
|
|
verts.insert(mesh.edges[T.edges[0]].verts[1]);
|
|
|
|
verts.insert(mesh.edges[T.edges[1]].verts[0]);
|
|
|
|
verts.insert(mesh.edges[T.edges[1]].verts[1]);
|
|
|
|
verts.insert(mesh.edges[T.edges[2]].verts[0]);
|
|
|
|
verts.insert(mesh.edges[T.edges[2]].verts[1]);
|
|
|
|
return verts;
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// method to set the OBB parameters which produce a box oriented according to
|
|
|
|
// the covariance matrix C, which just containts the points pnts
|
2018-12-08 05:30:43 +00:00
|
|
|
static FittedOBB BuildFromCovarianceMatrix(gmm::dense_matrix<float>& C, const ColMesh& mesh,
|
|
|
|
const std::vector<int>& index) {
|
|
|
|
FittedOBB ret;
|
|
|
|
|
|
|
|
// extract the eigenvalues and eigenvectors from C
|
|
|
|
gmm::dense_matrix<float> eigvec(3, 3);
|
|
|
|
std::vector<float> eigval(3);
|
|
|
|
using namespace gmm;
|
|
|
|
using MAT1 = gmm::dense_matrix<float>;
|
|
|
|
gmm::symmetric_qr_algorithm(C, eigval, eigvec, default_tol_for_qr);
|
|
|
|
|
|
|
|
// find the right, up and forward vectors from the eigenvectors
|
|
|
|
zeus::CVector3f r(eigvec(0, 0), eigvec(1, 0), eigvec(2, 0));
|
2019-03-08 04:16:42 +00:00
|
|
|
zeus::CVector3f f(eigvec(0, 1), eigvec(1, 1), eigvec(2, 1));
|
|
|
|
zeus::CVector3f u(eigvec(0, 2), eigvec(1, 2), eigvec(2, 2));
|
2018-12-08 05:30:43 +00:00
|
|
|
r.normalize();
|
2019-03-08 04:16:42 +00:00
|
|
|
f.normalize();
|
|
|
|
u.normalize();
|
2018-12-08 05:30:43 +00:00
|
|
|
|
|
|
|
// set the rotation matrix using the eigvenvectors
|
|
|
|
ret.xf.basis[0] = r;
|
2019-03-08 04:16:42 +00:00
|
|
|
ret.xf.basis[1] = f;
|
|
|
|
ret.xf.basis[2] = u;
|
|
|
|
ret.xf.orthonormalize();
|
2018-12-08 05:30:43 +00:00
|
|
|
|
|
|
|
// now build the bounding box extents in the rotated frame
|
|
|
|
zeus::CVector3f minim(1e10f, 1e10f, 1e10f), maxim(-1e10f, -1e10f, -1e10f);
|
|
|
|
for (int triIdx : index) {
|
|
|
|
std::unordered_set<uint32_t> verts = GetTriangleVerts(mesh, triIdx);
|
|
|
|
for (uint32_t v : verts) {
|
|
|
|
const zeus::CVector3f& p = mesh.verts[v].val;
|
2019-03-08 04:16:42 +00:00
|
|
|
zeus::CVector3f p_prime(ret.xf.basis[0].dot(p), ret.xf.basis[1].dot(p), ret.xf.basis[2].dot(p));
|
2018-12-08 05:30:43 +00:00
|
|
|
minim = zeus::min(minim, p_prime);
|
|
|
|
maxim = zeus::max(maxim, p_prime);
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
2018-12-08 05:30:43 +00:00
|
|
|
}
|
2017-10-17 05:51:53 +00:00
|
|
|
|
2018-12-08 05:30:43 +00:00
|
|
|
// set the center of the OBB to be the average of the
|
|
|
|
// minimum and maximum, and the extents be half of the
|
|
|
|
// difference between the minimum and maximum
|
|
|
|
zeus::CVector3f center = (maxim + minim) * 0.5f;
|
|
|
|
ret.xf.origin = ret.xf.basis * center;
|
|
|
|
ret.he = (maxim - minim) * 0.5f;
|
2017-10-17 05:51:53 +00:00
|
|
|
|
2018-12-08 05:30:43 +00:00
|
|
|
return ret;
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// builds an OBB from triangles specified as an array of
|
|
|
|
// points with integer indices into the point array. Forms
|
|
|
|
// the covariance matrix for the triangles, then uses the
|
|
|
|
// method build_from_covariance_matrix() method to fit
|
|
|
|
// the box. ALL points will be fit in the box, regardless
|
|
|
|
// of whether they are indexed by a triangle or not.
|
2018-12-08 05:30:43 +00:00
|
|
|
static FittedOBB FitOBB(const ColMesh& mesh, const std::vector<int>& index) {
|
|
|
|
float Ai, Am = 0.0;
|
|
|
|
zeus::CVector3f mu, mui;
|
|
|
|
gmm::dense_matrix<float> C(3, 3);
|
|
|
|
float cxx = 0.0, cxy = 0.0, cxz = 0.0, cyy = 0.0, cyz = 0.0, czz = 0.0;
|
|
|
|
|
|
|
|
// loop over the triangles this time to find the
|
|
|
|
// mean location
|
|
|
|
for (int i : index) {
|
|
|
|
std::unordered_set<uint32_t> verts = GetTriangleVerts(mesh, i);
|
|
|
|
auto it = verts.begin();
|
|
|
|
zeus::CVector3f p = mesh.verts[*it++].val;
|
|
|
|
zeus::CVector3f q = mesh.verts[*it++].val;
|
|
|
|
zeus::CVector3f r = mesh.verts[*it++].val;
|
|
|
|
mui = (p + q + r) / 3.f;
|
|
|
|
Ai = (q - p).cross(r - p).magnitude() / 2.f;
|
|
|
|
mu += mui * Ai;
|
|
|
|
Am += Ai;
|
|
|
|
|
|
|
|
// these bits set the c terms to Am*E[xx], Am*E[xy], Am*E[xz]....
|
|
|
|
cxx += (9.0 * mui.x() * mui.x() + p.x() * p.x() + q.x() * q.x() + r.x() * r.x()) * (Ai / 12.0);
|
|
|
|
cxy += (9.0 * mui.x() * mui.y() + p.x() * p.y() + q.x() * q.y() + r.x() * r.y()) * (Ai / 12.0);
|
|
|
|
cxz += (9.0 * mui.x() * mui.z() + p.x() * p.z() + q.x() * q.z() + r.x() * r.z()) * (Ai / 12.0);
|
|
|
|
cyy += (9.0 * mui.y() * mui.y() + p.y() * p.y() + q.y() * q.y() + r.y() * r.y()) * (Ai / 12.0);
|
|
|
|
cyz += (9.0 * mui.y() * mui.z() + p.y() * p.z() + q.y() * q.z() + r.y() * r.z()) * (Ai / 12.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (zeus::close_enough(Am, 0.f))
|
|
|
|
return {};
|
|
|
|
|
|
|
|
// divide out the Am fraction from the average position and
|
|
|
|
// covariance terms
|
|
|
|
mu = mu / Am;
|
|
|
|
cxx /= Am;
|
|
|
|
cxy /= Am;
|
|
|
|
cxz /= Am;
|
|
|
|
cyy /= Am;
|
|
|
|
cyz /= Am;
|
|
|
|
czz /= Am;
|
|
|
|
|
|
|
|
// now subtract off the E[x]*E[x], E[x]*E[y], ... terms
|
|
|
|
cxx -= mu.x() * mu.x();
|
|
|
|
cxy -= mu.x() * mu.y();
|
|
|
|
cxz -= mu.x() * mu.z();
|
|
|
|
cyy -= mu.y() * mu.y();
|
|
|
|
cyz -= mu.y() * mu.z();
|
|
|
|
czz -= mu.z() * mu.z();
|
|
|
|
|
|
|
|
// now build the covariance matrix
|
|
|
|
C(0, 0) = cxx;
|
|
|
|
C(0, 1) = cxy;
|
|
|
|
C(0, 2) = cxz;
|
|
|
|
C(1, 0) = cxy;
|
|
|
|
C(1, 1) = cyy;
|
|
|
|
C(1, 2) = cyz;
|
|
|
|
C(2, 0) = cxz;
|
|
|
|
C(2, 1) = cyz;
|
|
|
|
C(2, 2) = czz;
|
|
|
|
|
|
|
|
// set the obb parameters from the covariance matrix
|
|
|
|
return BuildFromCovarianceMatrix(C, mesh, index);
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Node>
|
2018-12-08 05:30:43 +00:00
|
|
|
static void MakeLeaf(const ColMesh& mesh, const std::vector<int>& index, Node& n) {
|
|
|
|
n.left.reset();
|
|
|
|
n.right.reset();
|
|
|
|
n.isLeaf = true;
|
|
|
|
n.leafData = std::make_unique<typename Node::LeafData>();
|
|
|
|
n.leafData->triangleIndexCount = atUint32(index.size());
|
|
|
|
n.leafData->triangleIndices.reserve(n.leafData->triangleIndexCount);
|
|
|
|
for (int i : index)
|
|
|
|
n.leafData->triangleIndices.push_back(i);
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Node>
|
2018-12-08 05:30:43 +00:00
|
|
|
static std::unique_ptr<Node> RecursiveMakeNode(const ColMesh& mesh, const std::vector<int>& index) {
|
|
|
|
// calculate root OBB
|
|
|
|
FittedOBB obb = FitOBB(mesh, index);
|
|
|
|
|
|
|
|
// make results row-major and also invert the rotation basis
|
|
|
|
obb.xf.basis.transpose();
|
|
|
|
|
|
|
|
std::unique_ptr<Node> n = std::make_unique<Node>();
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
|
|
n->xf[i] = zeus::CVector4f{obb.xf.basis[i]};
|
|
|
|
n->xf[i].simd[3] = float(obb.xf.origin[i]);
|
|
|
|
}
|
|
|
|
n->halfExtent = obb.he;
|
|
|
|
|
|
|
|
// terminate branch when volume < 1.0
|
|
|
|
if (obb.he[0] * obb.he[1] * obb.he[2] < 1.f) {
|
|
|
|
MakeLeaf(mesh, index, *n);
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
n->isLeaf = false;
|
|
|
|
|
|
|
|
std::vector<int> indexNeg[3];
|
|
|
|
std::vector<int> indexPos[3];
|
|
|
|
for (int c = 0; c < 3; ++c) {
|
|
|
|
// subdivide negative side
|
|
|
|
indexNeg[c].reserve(index.size());
|
|
|
|
for (int i : index) {
|
|
|
|
std::unordered_set<uint32_t> verts = GetTriangleVerts(mesh, i);
|
|
|
|
for (uint32_t vtx : verts) {
|
|
|
|
zeus::CVector3f v = mesh.verts[vtx].val;
|
|
|
|
v = obb.xf.basis * (v - obb.xf.origin);
|
|
|
|
if (v[c] < 0.f) {
|
|
|
|
indexNeg[c].push_back(i);
|
|
|
|
break;
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
2018-12-08 05:30:43 +00:00
|
|
|
}
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
|
|
|
|
2018-12-08 05:30:43 +00:00
|
|
|
// subdivide positive side
|
|
|
|
indexPos[c].reserve(index.size());
|
|
|
|
for (int i : index) {
|
|
|
|
std::unordered_set<uint32_t> verts = GetTriangleVerts(mesh, i);
|
|
|
|
for (uint32_t vtx : verts) {
|
|
|
|
zeus::CVector3f v = mesh.verts[vtx].val;
|
|
|
|
v = obb.xf.basis * (v - obb.xf.origin);
|
|
|
|
if (v[c] >= 0.f) {
|
|
|
|
indexPos[c].push_back(i);
|
|
|
|
break;
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
2018-12-08 05:30:43 +00:00
|
|
|
}
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
2018-12-08 05:30:43 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
size_t idxMin = index.size();
|
|
|
|
int minComp = -1;
|
|
|
|
for (int c = 0; c < 3; ++c) {
|
|
|
|
size_t test = std::max(indexNeg[c].size(), indexPos[c].size());
|
|
|
|
if (test < idxMin && test < index.size() * 3 / 4) {
|
|
|
|
minComp = c;
|
|
|
|
idxMin = test;
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
2018-12-08 05:30:43 +00:00
|
|
|
}
|
2017-10-17 05:51:53 +00:00
|
|
|
|
2018-12-08 05:30:43 +00:00
|
|
|
if (minComp == -1) {
|
|
|
|
MakeLeaf(mesh, index, *n);
|
2017-10-17 05:51:53 +00:00
|
|
|
return n;
|
2018-12-08 05:30:43 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
n->left = RecursiveMakeNode<Node>(mesh, indexNeg[minComp]);
|
|
|
|
n->right = RecursiveMakeNode<Node>(mesh, indexPos[minComp]);
|
|
|
|
|
|
|
|
return n;
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Node>
|
2018-12-08 05:30:43 +00:00
|
|
|
std::unique_ptr<Node> OBBTreeBuilder::buildCol(const ColMesh& mesh) {
|
|
|
|
std::vector<int> root = MakeRootTriangleIndex(mesh);
|
|
|
|
return RecursiveMakeNode<Node>(mesh, root);
|
2017-10-17 05:51:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template std::unique_ptr<DNAMP1::DCLN::Collision::Node>
|
|
|
|
OBBTreeBuilder::buildCol<DNAMP1::DCLN::Collision::Node>(const ColMesh& mesh);
|
|
|
|
|
2018-12-08 05:30:43 +00:00
|
|
|
} // namespace DataSpec
|