/* -*- c++ -*- (enables emacs c++ mode) */ /*=========================================================================== Copyright (C) 2003-2017 Yves Renard This file is a part of GetFEM++ GetFEM++ is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version along with the GCC Runtime Library Exception either version 3.1 or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License and GCC Runtime Library Exception for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. As a special exception, you may use this file as it is a part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU Lesser General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU Lesser General Public License. ===========================================================================*/ /**@file gmm_precond_diagonal.h @author Yves Renard @date June 5, 2003. @brief Diagonal matrix preconditoner. */ #ifndef GMM_PRECOND_DIAGONAL_H #define GMM_PRECOND_DIAGONAL_H #include "gmm_precond.h" namespace gmm { /** Diagonal preconditioner. */ template struct diagonal_precond { typedef typename linalg_traits::value_type value_type; typedef typename number_traits::magnitude_type magnitude_type; std::vector diag; void build_with(const Matrix &M) { diag.resize(mat_nrows(M)); for (size_type i = 0; i < mat_nrows(M); ++i) { magnitude_type x = gmm::abs(M(i, i)); if (x == magnitude_type(0)) { x = magnitude_type(1); GMM_WARNING2("The matrix has a zero on its diagonal"); } diag[i] = magnitude_type(1) / x; } } size_type memsize() const { return sizeof(*this) + diag.size() * sizeof(value_type); } diagonal_precond(const Matrix &M) { build_with(M); } diagonal_precond(void) {} }; template inline void mult_diag_p(const diagonal_precond& P, V2 &v2, abstract_sparse){ typename linalg_traits::iterator it = vect_begin(v2), ite = vect_end(v2); for (; it != ite; ++it) *it *= P.diag[it.index()]; } template inline void mult_diag_p(const diagonal_precond& P,V2 &v2, abstract_skyline) { mult_diag_p(P, v2, abstract_sparse()); } template inline void mult_diag_p(const diagonal_precond& P, V2 &v2, abstract_dense){ for (size_type i = 0; i < P.diag.size(); ++i) v2[i] *= P.diag[i]; } template inline void mult(const diagonal_precond& P, const V1 &v1, V2 &v2) { GMM_ASSERT2(P.diag.size() == vect_size(v2),"dimensions mismatch"); copy(v1, v2); mult_diag_p(P, v2, typename linalg_traits::storage_type()); } template inline void transposed_mult(const diagonal_precond& P,const V1 &v1,V2 &v2) { mult(P, v1, v2); } // # define DIAG_LEFT_MULT_SQRT template inline void left_mult(const diagonal_precond& P, const V1 &v1, V2 &v2) { GMM_ASSERT2(P.diag.size() == vect_size(v2), "dimensions mismatch"); copy(v1, v2); # ifdef DIAG_LEFT_MULT_SQRT for (size_type i= 0; i < P.diag.size(); ++i) v2[i] *= gmm::sqrt(P.diag[i]); # else for (size_type i= 0; i < P.diag.size(); ++i) v2[i] *= P.diag[i]; # endif } template inline void transposed_left_mult(const diagonal_precond& P, const V1 &v1, V2 &v2) { left_mult(P, v1, v2); } template inline void right_mult(const diagonal_precond& P, const V1 &v1, V2 &v2) { // typedef typename linalg_traits::value_type T; GMM_ASSERT2(P.diag.size() == vect_size(v2), "dimensions mismatch"); copy(v1, v2); # ifdef DIAG_LEFT_MULT_SQRT for (size_type i= 0; i < P.diag.size(); ++i) v2[i] *= gmm::sqrt(P.diag[i]); # endif } template inline void transposed_right_mult(const diagonal_precond& P, const V1 &v1, V2 &v2) { right_mult(P, v1, v2); } } #endif