#include "shader_CFluidPlaneShader.hpp" #include #include #define FOG_STRUCT_HLSL \ "struct Fog\n" \ "{\n" \ " float4 color;\n" \ " float A;\n" \ " float B;\n" \ " float C;\n" \ " int mode;\n" \ " float indScale;\n" \ "};\n" #define FOG_ALGORITHM_HLSL \ "static float4 MainPostFunc(in VertToFrag vtf, float4 colorIn)\n" \ "{\n" \ " float fogZ;\n" \ " float fogF = saturate((fog.A / (fog.B - (1.0 - vtf.pos.z))) - fog.C);\n" \ " switch (fog.mode)\n" \ " {\n" \ " case 2:\n" \ " fogZ = fogF;\n" \ " break;\n" \ " case 4:\n" \ " fogZ = 1.0 - exp2(-8.0 * fogF);\n" \ " break;\n" \ " case 5:\n" \ " fogZ = 1.0 - exp2(-8.0 * fogF * fogF);\n" \ " break;\n" \ " case 6:\n" \ " fogZ = exp2(-8.0 * (1.0 - fogF));\n" \ " break;\n" \ " case 7:\n" \ " fogF = 1.0 - fogF;\n" \ " fogZ = exp2(-8.0 * fogF * fogF);\n" \ " break;\n" \ " default:\n" \ " fogZ = 0.0;\n" \ " break;\n" \ " }\n" \ "#if IS_ADDITIVE\n" \ " return float4(lerp(colorIn, float4(0.0,0.0,0.0,0.0), saturate(fogZ)).rgb, colorIn.a);\n" \ "#else\n" \ " return float4(lerp(colorIn, fog.color, saturate(fogZ)).rgb, colorIn.a);\n" \ "#endif\n" \ "}\n" static const char* VS = "struct VertData\n" "{\n" " float4 posIn : POSITION;\n" " float4 normalIn : NORMAL0;\n" " float4 binormalIn : NORMAL1;\n" " float4 tangentIn : NORMAL2;\n" " float4 colorIn : COLOR;\n" "};\n" "\n" "cbuffer FluidPlaneUniform : register(b0)\n" "{\n" " float4x4 mv;\n" " float4x4 mvNorm;\n" " float4x4 proj;\n" " float4x4 texMtxs[6];\n" "};\n" "\n" "struct VertToFrag\n" "{\n" " float4 pos : SV_Position;\n" " float4 mvPos : POSITION;\n" " float4 mvNorm : NORMAL;\n" " float4 mvBinorm : BINORMAL;\n" " float4 mvTangent : TANGENT;\n" " float4 color : COLOR;\n" " float2 uvs[7] : UV;\n" "};\n" "\n" "VertToFrag main(in VertData v)\n" "{\n" " VertToFrag vtf;\n" " float4 pos = float4(v.posIn.xyz, 1.0);\n" " float4 normalIn = v.normalIn;\n" " vtf.mvPos = mul(mv, pos);\n" " vtf.pos = mul(proj, vtf.mvPos);\n" " vtf.mvNorm = mul(mvNorm, v.normalIn);\n" " vtf.mvBinorm = mul(mvNorm, v.binormalIn);\n" " vtf.mvTangent = mul(mvNorm, v.tangentIn);\n" " vtf.color = float4(v.colorIn.xyz, 1.0);\n" " vtf.uvs[0] = mul(texMtxs[0], pos).xy;\n" " vtf.uvs[1] = mul(texMtxs[1], pos).xy;\n" " vtf.uvs[2] = mul(texMtxs[2], pos).xy;\n" " ADDITIONAL_TCGS\n" // Additional TCGs here " return vtf;\n" "}\n"; static const char* TessVS = "struct VertData\n" "{\n" " float4 posIn : POSITION;\n" " float4 outerLevelsIn : UV0;\n" " float2 innerLevelsIn : UV1;\n" "};\n" "\n" "struct VertToControl\n" "{\n" " float4 minMaxPos : POSITION;\n" " float4 outerLevels : OUTERLEVELS;\n" " float2 innerLevels : INNERLEVELS;\n" "};\n" "\n" "VertToControl main(in VertData v)\n" "{\n" " VertToControl vtc;\n" " vtc.minMaxPos = v.posIn;\n" " vtc.outerLevels = v.outerLevelsIn;\n" " vtc.innerLevels = v.innerLevelsIn;\n" " return vtc;\n" "}\n"; static const char* TessCS = "struct VertToControl\n" "{\n" " float4 minMaxPos : POSITION;\n" " float4 outerLevels : OUTERLEVELS;\n" " float2 innerLevels : INNERLEVELS;\n" "};\n" "\n" "struct ControlToEvaluation\n" "{\n" " float4 minMaxPos : POSITION;\n" " float outerLevels[4] : SV_TessFactor;\n" " float innerLevels[2] : SV_InsideTessFactor;\n" "};\n" "\n" "struct ControlPoint\n" "{};\n" "\n" "ControlToEvaluation patchmain(InputPatch vtc, uint id : SV_PrimitiveID)\n" "{\n" " ControlToEvaluation cte;\n" " cte.minMaxPos = vtc[id].minMaxPos;\n" " for (int i=0 ; i<4 ; ++i)\n" " cte.outerLevels[i] = vtc[id].outerLevels[i];\n" " for (int i=0 ; i<2 ; ++i)\n" " cte.innerLevels[i] = vtc[id].innerLevels[i];\n" " return cte;\n" "}\n" "\n" "[domain(\"quad\")]\n" "[partitioning(\"integer\")]\n" "[outputtopology(\"triangle_cw\")]\n" "[outputcontrolpoints(1)]\n" "[patchconstantfunc(\"patchmain\")]\n" "ControlPoint main(InputPatch vtc, uint i : SV_OutputControlPointID, uint id : SV_PrimitiveID)\n" "{\n" " ControlPoint pt;\n" " return pt;\n" "}\n"; static const char* TessES = "struct Ripple\n" "{\n" " float4 center; // time, distFalloff\n" " float4 params; // amplitude, lookupPhase, lookupTime\n" "};\n" "\n" "cbuffer FluidPlaneUniform : register(b0)\n" "{\n" " float4x4 mv;\n" " float4x4 mvNorm;\n" " float4x4 proj;\n" " float4x4 texMtxs[6];\n" " Ripple ripples[20];\n" " float4 colorMul;\n" " float rippleNormResolution;\n" "};\n" "\n" "struct VertToFrag\n" "{\n" " float4 pos : SV_Position;\n" " float4 mvPos : POSITION;\n" " float4 mvNorm : NORMAL;\n" " float4 mvBinorm : BINORMAL;\n" " float4 mvTangent : TANGENT;\n" " float4 color : COLOR;\n" " float2 uvs[7] : UV;\n" "};\n" "\n" "struct ControlToEvaluation\n" "{\n" " float4 minMaxPos : POSITION;\n" " float outerLevels[4] : SV_TessFactor;\n" " float innerLevels[2] : SV_InsideTessFactor;\n" "};\n" "\n" "struct ControlPoint\n" "{};\n" "\n" "Texture2D RippleMap : register(RIPPLE_TEXTURE_REG);\n" "SamplerState samp : register(s2);\n" "\n" "static const float PI_X2 = 6.283185307179586;\n" "\n" "static void ApplyRipple(in Ripple ripple, in float2 pos, inout float height)\n" "{\n" " float dist = length(ripple.center.xy - pos);\n" " float rippleV = RippleMap.SampleLevel(samp, float2(dist * ripple.center.w, ripple.center.z), 0.0).r;\n" " height += rippleV * ripple.params.x * sin((dist * ripple.params.y + ripple.params.z) * PI_X2);\n" "}\n" "\n" "[domain(\"quad\")]\n" "VertToFrag main(in ControlToEvaluation cte, in float2 TessCoord : SV_DomainLocation,\n" " const OutputPatch bezpatch)\n" "{\n" " float2 posIn = float2(lerp(cte.minMaxPos.x, cte.minMaxPos.z, TessCoord.x),\n" " lerp(cte.minMaxPos.y, cte.minMaxPos.w, TessCoord.y));\n" " float height = 0.0;\n" " float upHeight = 0.0;\n" " float downHeight = 0.0;\n" " float rightHeight = 0.0;\n" " float leftHeight = 0.0;\n" " for (int i=0 ; i<20 ; ++i)\n" " {\n" " ApplyRipple(ripples[i], posIn, height);\n" " ApplyRipple(ripples[i], posIn + float2(0.0, rippleNormResolution), upHeight);\n" " ApplyRipple(ripples[i], posIn - float2(0.0, rippleNormResolution), downHeight);\n" " ApplyRipple(ripples[i], posIn + float2(rippleNormResolution, 0.0), rightHeight);\n" " ApplyRipple(ripples[i], posIn - float2(rippleNormResolution, 0.0), leftHeight);\n" " }\n" " float4 normalIn = float4(normalize(float3((leftHeight - rightHeight),\n" " (downHeight - upHeight),\n" " rippleNormResolution)), 1.0);\n" " float4 binormalIn = float4(normalIn.x, normalIn.z, -normalIn.y, 1.0);\n" " float4 tangentIn = float4(normalIn.z, normalIn.y, -normalIn.x, 1.0);\n" " float4 pos = float4(posIn, height, 1.0);\n" " VertToFrag vtf;\n" " vtf.mvPos = mul(mv, pos);\n" " vtf.pos = mul(proj, vtf.mvPos);\n" " vtf.mvNorm = mul(mvNorm, normalIn);\n" " vtf.mvBinorm = mul(mvNorm, binormalIn);\n" " vtf.mvTangent = mul(mvNorm, tangentIn);\n" " vtf.color = max(height, 0.0) * colorMul;\n" " vtf.color.a = 1.0;\n" " vtf.uvs[0] = mul(texMtxs[0], pos).xy;\n" " vtf.uvs[1] = mul(texMtxs[1], pos).xy;\n" " vtf.uvs[2] = mul(texMtxs[2], pos).xy;\n" " ADDITIONAL_TCGS\n" // Additional TCGs here " return vtf;\n" "}\n"; static const char* FS = "struct Light\n" "{\n" " float4 pos;\n" " float4 dir;\n" " float4 color;\n" " float4 linAtt;\n" " float4 angAtt;\n" "};\n" FOG_STRUCT_HLSL "\n" "cbuffer LightingUniform : register(b2)\n" "{\n" " Light lights[" _XSTR(URDE_MAX_LIGHTS) "];\n" " float4 ambient;\n" " float4 kColor0;\n" " float4 kColor1;\n" " float4 kColor2;\n" " float4 kColor3;\n" " float4 addColor;\n" " Fog fog;\n" "};\n" "\n" "static float4 LightingFunc(float3 mvPosIn, float3 mvNormIn)\n" "{\n" " float4 ret = ambient;\n" " \n" " for (int i=0 ; i<" _XSTR(URDE_MAX_LIGHTS) " ; ++i)\n" " {\n" " float3 delta = mvPosIn - lights[i].pos.xyz;\n" " float dist = length(delta);\n" " float angDot = clamp(dot(normalize(delta), lights[i].dir.xyz), 0.0, 1.0);\n" " float att = 1.0 / (lights[i].linAtt[2] * dist * dist +\n" " lights[i].linAtt[1] * dist +\n" " lights[i].linAtt[0]);\n" " float angAtt = lights[i].angAtt[2] * angDot * angDot +\n" " lights[i].angAtt[1] * angDot +\n" " lights[i].angAtt[0];\n" " ret += lights[i].color * angAtt * att * saturate(dot(normalize(-delta), mvNormIn));\n" " }\n" " \n" " return saturate(ret);\n" "}\n" "\n" "struct VertToFrag\n" "{\n" " float4 pos : SV_Position;\n" " float4 mvPos : POSITION;\n" " float4 mvNorm : NORMAL;\n" " float4 mvBinorm : BINORMAL;\n" " float4 mvTangent : TANGENT;\n" " float4 color : COLOR;\n" " float2 uvs[7] : UV;\n" "};\n" "\n" FOG_ALGORITHM_HLSL "\n" "SamplerState samp : register(s0);\n" "TEXTURE_DECLS\n" // Textures here "float4 main(in VertToFrag vtf) : SV_Target0\n" "{\n" " float4 lighting = LightingFunc(vtf.mvPos.xyz, normalize(vtf.mvNorm.xyz));\n" " float4 colorOut;\n" " COMBINER_EXPRS\n" // Combiner expression here " return MainPostFunc(vtf, colorOut);\n" "}\n"; static const char* FSDoor = "struct Light\n" "{\n" " float4 pos;\n" " float4 dir;\n" " float4 color;\n" " float4 linAtt;\n" " float4 angAtt;\n" "};\n" FOG_STRUCT_HLSL "\n" "cbuffer LightingUniform : register(b2)\n" "{\n" " Light lights[" _XSTR(URDE_MAX_LIGHTS) "];\n" " float4 ambient;\n" " float4 kColor0;\n" " float4 kColor1;\n" " float4 kColor2;\n" " float4 kColor3;\n" " float4 addColor;\n" " Fog fog;\n" "};\n" "struct VertToFrag\n" "{\n" " float4 pos : SV_Position;\n" " float4 mvPos : POSITION;\n" " float4 mvNorm : NORMAL;\n" " float4 mvBinorm : BINORMAL;\n" " float4 mvTangent : TANGENT;\n" " float4 color : COLOR;\n" " float2 uvs[7] : UV;\n" "};\n" FOG_ALGORITHM_HLSL "\n" "SamplerState samp : register(s0);\n" "TEXTURE_DECLS\n" // Textures here "float4 main(in VertToFrag vtf) : SV_Target0\n" "{\n" " float4 colorOut;\n" " COMBINER_EXPRS\n" // Combiner expression here " return MainPostFunc(vtf, colorOut);\n" "}\n"; static std::string _BuildFS(const SFluidPlaneShaderInfo& info) { std::stringstream out; int nextTex = 0; int nextTCG = 3; int nextMtx = 4; int bumpMapUv = -1; int envBumpMapUv = -1; int envMapUv = -1; int lightmapUv = -1; out << "#define TEXTURE_DECLS "; if (info.m_hasPatternTex1) fmt::print(out, FMT_STRING("Texture2D patternTex1 : register(t{});"), nextTex++); if (info.m_hasPatternTex2) fmt::print(out, FMT_STRING("Texture2D patternTex2 : register(t{});"), nextTex++); if (info.m_hasColorTex) fmt::print(out, FMT_STRING("Texture2D colorTex : register(t{});"), nextTex++); if (info.m_hasBumpMap) fmt::print(out, FMT_STRING("Texture2D bumpMap : register(t{});"), nextTex++); if (info.m_hasEnvMap) fmt::print(out, FMT_STRING("Texture2D envMap : register(t{});"), nextTex++); if (info.m_hasEnvBumpMap) fmt::print(out, FMT_STRING("Texture2D envBumpMap : register(t{});"), nextTex++); if (info.m_hasLightmap) fmt::print(out, FMT_STRING("Texture2D lightMap : register(t{});"), nextTex++); out << '\n'; out << "#define ADDITIONAL_TCGS "; if (info.m_hasBumpMap) { bumpMapUv = nextTCG; fmt::print(out, FMT_STRING("vtf.uvs[{}] = mul(texMtxs[0], pos).xy;"), nextTCG++); } if (info.m_hasEnvBumpMap) { envBumpMapUv = nextTCG; fmt::print(out, FMT_STRING("vtf.uvs[{}] = mul(texMtxs[3], float4(normalIn.xyz, 1.0)).xy;"), nextTCG++); } if (info.m_hasEnvMap) { envMapUv = nextTCG; fmt::print(out, FMT_STRING("vtf.uvs[{}] = mul(texMtxs[{}], pos).xy;"), nextTCG++, nextMtx++); } if (info.m_hasLightmap) { lightmapUv = nextTCG; fmt::print(out, FMT_STRING("vtf.uvs[{}] = mul(texMtxs[{}], pos).xy;"), nextTCG++, nextMtx++); } out << '\n'; out << "#define COMBINER_EXPRS "; switch (info.m_type) { case EFluidType::NormalWater: case EFluidType::PhazonFluid: case EFluidType::Four: if (info.m_hasLightmap) { fmt::print(out, FMT_STRING("float4 lightMapTexel = lightMap.Sample(samp, vtf.uvs[{}]);"), lightmapUv); // 0: Tex4TCG, Tex4, doubleLightmapBlend ? NULL : GX_COLOR1A1 // ZERO, TEX, KONST, doubleLightmapBlend ? ZERO : RAS // Output reg 2 // KColor 2 if (info.m_doubleLightmapBlend) { // 1: Tex4TCG2, Tex4, GX_COLOR1A1 // C2, TEX, KONST, RAS // Output reg 2 // KColor 3 // Tex * K2 + Lighting out << "lighting += lerp(lightMapTexel * kColor2, lightMapTexel, kColor3);"; } else { // mix(Tex * K2, Tex, K3) + Lighting out << "lighting += lightMapTexel * kColor2;"; } } // Next: Tex0TCG, Tex0, GX_COLOR1A1 // ZERO, TEX, KONST, RAS // Output reg prev // KColor 0 // Next: Tex1TCG, Tex1, GX_COLOR0A0 // ZERO, TEX, PREV, RAS // Output reg prev // Next: Tex2TCG, Tex2, GX_COLOR1A1 // ZERO, TEX, hasTex4 ? C2 : RAS, PREV // Output reg prev // (Tex0 * kColor0 + Lighting) * Tex1 + VertColor + Tex2 * Lighting if (info.m_hasPatternTex2) { if (info.m_hasPatternTex1) out << "colorOut = (patternTex1.Sample(samp, vtf.uvs[0]) * kColor0 + lighting) * " "patternTex2.Sample(samp, vtf.uvs[1]) + vtf.color;"; else out << "colorOut = lighting * patternTex2.Sample(samp, vtf.uvs[1]) + vtf.color;"; } else { out << "colorOut = vtf.color;"; } if (info.m_hasColorTex && !info.m_hasEnvMap && info.m_hasEnvBumpMap) { // Make previous stage indirect, mtx0 fmt::print(out, FMT_STRING( "float2 indUvs = (envBumpMap.Sample(samp, vtf.uvs[{}]).ra - float2(0.5, 0.5)) * " "float2(fog.indScale, -fog.indScale);"), envBumpMapUv); out << "colorOut += colorTex.Sample(samp, indUvs + vtf.uvs[2]) * lighting;"; } else if (info.m_hasEnvMap) { // Next: envTCG, envTex, NULL // PREV, TEX, KONST, ZERO // Output reg prev // KColor 1 // Make previous stage indirect, mtx0 if (info.m_hasColorTex) out << "colorOut += colorTex.Sample(samp, vtf.uvs[2]) * lighting;"; fmt::print(out, FMT_STRING( "float2 indUvs = (envBumpMap.Sample(samp, vtf.uvs[{}]).ra - float2(0.5, 0.5)) * " "float2(fog.indScale, -fog.indScale);"), envBumpMapUv); fmt::print(out, FMT_STRING("colorOut = lerp(colorOut, envMap.Sample(samp, indUvs + vtf.uvs[{}]), kColor1);"), envMapUv); } else if (info.m_hasColorTex) { out << "colorOut += colorTex.Sample(samp, vtf.uvs[2]) * lighting;"; } break; case EFluidType::PoisonWater: if (info.m_hasLightmap) { fmt::print(out, FMT_STRING("float4 lightMapTexel = lightMap.Sample(samp, vtf.uvs[{}]);"), lightmapUv); // 0: Tex4TCG, Tex4, doubleLightmapBlend ? NULL : GX_COLOR1A1 // ZERO, TEX, KONST, doubleLightmapBlend ? ZERO : RAS // Output reg 2 // KColor 2 if (info.m_doubleLightmapBlend) { // 1: Tex4TCG2, Tex4, GX_COLOR1A1 // C2, TEX, KONST, RAS // Output reg 2 // KColor 3 // Tex * K2 + Lighting out << "lighting += lerp(lightMapTexel * kColor2, lightMapTexel, kColor3);"; } else { // mix(Tex * K2, Tex, K3) + Lighting out << "lighting += lightMapTexel * kColor2;"; } } // Next: Tex0TCG, Tex0, GX_COLOR1A1 // ZERO, TEX, KONST, RAS // Output reg prev // KColor 0 // Next: Tex1TCG, Tex1, GX_COLOR0A0 // ZERO, TEX, PREV, RAS // Output reg prev // Next: Tex2TCG, Tex2, GX_COLOR1A1 // ZERO, TEX, hasTex4 ? C2 : RAS, PREV // Output reg prev // (Tex0 * kColor0 + Lighting) * Tex1 + VertColor + Tex2 * Lighting if (info.m_hasPatternTex2) { if (info.m_hasPatternTex1) out << "colorOut = (patternTex1.Sample(samp, vtf.uvs[0]) * kColor0 + lighting) * " "patternTex2.Sample(samp, vtf.uvs[1]) + vtf.color;"; else out << "colorOut = lighting * patternTex2.Sample(samp, vtf.uvs[1]) + vtf.color;"; } else { out << "colorOut = vtf.color;"; } if (info.m_hasColorTex) { if (info.m_hasEnvBumpMap) { // Make previous stage indirect, mtx0 fmt::print(out, FMT_STRING( "float2 indUvs = (envBumpMap.Sample(samp, vtf.uvs[{}]).ra - float2(0.5, 0.5)) * " "float2(fog.indScale, -fog.indScale);"), envBumpMapUv); out << "colorOut += colorTex.Sample(samp, indUvs + vtf.uvs[2]) * lighting;"; } else { out << "colorOut += colorTex.Sample(samp, vtf.uvs[2]) * lighting;"; } } break; case EFluidType::Lava: // 0: Tex0TCG, Tex0, GX_COLOR0A0 // ZERO, TEX, KONST, RAS // Output reg prev // KColor 0 // 1: Tex1TCG, Tex1, GX_COLOR0A0 // ZERO, TEX, PREV, RAS // Output reg prev // 2: Tex2TCG, Tex2, NULL // ZERO, TEX, ONE, PREV // Output reg prev // (Tex0 * kColor0 + VertColor) * Tex1 + VertColor + Tex2 if (info.m_hasPatternTex2) { if (info.m_hasPatternTex1) out << "colorOut = (patternTex1.Sample(samp, vtf.uvs[0]) * kColor0 + vtf.color) * " "patternTex2.Sample(samp, vtf.uvs[1]) + vtf.color;"; else out << "colorOut = vtf.color * patternTex2.Sample(samp, vtf.uvs[1]) + vtf.color;"; } else { out << "colorOut = vtf.color;"; } if (info.m_hasColorTex) out << "colorOut += colorTex.Sample(samp, vtf.uvs[2]);"; if (info.m_hasBumpMap) { // 3: bumpMapTCG, bumpMap, NULL // ZERO, TEX, ONE, HALF // Output reg 0, no clamp, no bias // 4: bumpMapTCG2, bumpMap, NULL // ZERO, TEX, ONE, C0 // Output reg 0, subtract, clamp, no bias out << "float3 lightVec = lights[3].pos.xyz - vtf.mvPos.xyz;" "float lx = dot(vtf.mvTangent.xyz, lightVec);" "float ly = dot(vtf.mvBinorm.xyz, lightVec);"; fmt::print(out, FMT_STRING( "float4 emboss1 = bumpMap.Sample(samp, vtf.uvs[{}]) + float4(0.5);" "float4 emboss2 = bumpMap.Sample(samp, vtf.uvs[{}] + float2(lx, ly));"), bumpMapUv, bumpMapUv); // 5: NULL, NULL, NULL // ZERO, PREV, C0, ZERO // Output reg prev, scale 2, clamp // colorOut * clamp(emboss1 + 0.5 - emboss2, 0.0, 1.0) * 2.0 out << "colorOut *= clamp((emboss1 + float4(0.5) - emboss2) * float4(2.0), float4(0.0), float4(1.0));"; } break; case EFluidType::ThickLava: // 0: Tex0TCG, Tex0, GX_COLOR0A0 // ZERO, TEX, KONST, RAS // Output reg prev // KColor 0 // 1: Tex1TCG, Tex1, GX_COLOR0A0 // ZERO, TEX, PREV, RAS // Output reg prev // 2: Tex2TCG, Tex2, NULL // ZERO, TEX, ONE, PREV // Output reg prev // (Tex0 * kColor0 + VertColor) * Tex1 + VertColor + Tex2 if (info.m_hasPatternTex2) { if (info.m_hasPatternTex1) out << "colorOut = (patternTex1.Sample(samp, vtf.uvs[0]) * kColor0 + vtf.color) * " "patternTex2.Sample(samp, vtf.uvs[1]) + vtf.color;"; else out << "colorOut = vtf.color * patternTex2.Sample(samp, vtf.uvs[1]) + vtf.color;"; } else { out << "colorOut = vtf.color;"; } if (info.m_hasColorTex) out << "colorOut += colorTex.Sample(samp, vtf.uvs[2]);"; if (info.m_hasBumpMap) { // 3: bumpMapTCG, bumpMap, NULL // ZERO, TEX, PREV, ZERO // Output reg prev, scale 2 fmt::print(out, FMT_STRING("float4 emboss1 = bumpMap.Sample(samp, vtf.uvs[{}]) + float4(0.5);"), bumpMapUv); out << "colorOut *= emboss1 * float4(2.0);"; } break; } out << "colorOut.a = kColor0.a;\n"; out << "#define IS_ADDITIVE " << int(info.m_additive) << '\n'; out << FS; return out.str(); } static void _BuildAdditionalTCGs(std::stringstream& out, const SFluidPlaneShaderInfo& info) { int nextTCG = 3; int nextMtx = 4; out << "#define ADDITIONAL_TCGS "; if (info.m_hasBumpMap) fmt::print(out, FMT_STRING("vtf.uvs[{}] = mul(texMtxs[0], pos).xy;"), nextTCG++); if (info.m_hasEnvBumpMap) fmt::print(out, FMT_STRING("vtf.uvs[{}] = mul(texMtxs[3], float4(normalIn.xyz, 1.0)).xy;"), nextTCG++); if (info.m_hasEnvMap) fmt::print(out, FMT_STRING("vtf.uvs[{}] = mul(texMtxs[{}], pos).xy;"), nextTCG++, nextMtx++); if (info.m_hasLightmap) fmt::print(out, FMT_STRING("vtf.uvs[{}] = mul(texMtxs[{}], pos).xy;"), nextTCG, nextMtx); out << '\n'; } static std::string _BuildVS(const SFluidPlaneShaderInfo& info, bool tessellation) { if (tessellation) return TessVS; std::stringstream out; _BuildAdditionalTCGs(out, info); out << VS; return out.str(); } template <> std::string StageObject_CFluidPlaneShader::BuildShader( const SFluidPlaneShaderInfo& in, bool tessellation) { return _BuildVS(in, tessellation); } template <> std::string StageObject_CFluidPlaneShader::BuildShader( const SFluidPlaneShaderInfo& in, bool tessellation) { return _BuildFS(in); } template <> std::string StageObject_CFluidPlaneShader::BuildShader( const SFluidPlaneShaderInfo& in, bool tessellation) { return TessCS; } static std::string BuildES(const SFluidPlaneShaderInfo& info) { int nextTex = 0; if (info.m_hasPatternTex1) nextTex++; if (info.m_hasPatternTex2) nextTex++; if (info.m_hasColorTex) nextTex++; if (info.m_hasBumpMap) nextTex++; if (info.m_hasEnvMap) nextTex++; if (info.m_hasEnvBumpMap) nextTex++; if (info.m_hasLightmap) nextTex++; std::stringstream out; _BuildAdditionalTCGs(out, info); out << "#define RIPPLE_TEXTURE_REG t" << nextTex << '\n'; out << TessES; return out.str(); } template <> std::string StageObject_CFluidPlaneShader::BuildShader( const SFluidPlaneShaderInfo& in, bool tessellation) { return BuildES(in); } static std::string _BuildVS(const SFluidPlaneDoorShaderInfo& info) { std::stringstream out; out << "#define ADDITIONAL_TCGS\n"; out << VS; return out.str(); } static std::string _BuildFS(const SFluidPlaneDoorShaderInfo& info) { int nextTex = 0; std::stringstream out; out << "#define TEXTURE_DECLS "; if (info.m_hasPatternTex1) fmt::print(out, FMT_STRING("Texture2D patternTex1 : register(t{});"), nextTex++); if (info.m_hasPatternTex2) fmt::print(out, FMT_STRING("Texture2D patternTex2 : register(t{});"), nextTex++); if (info.m_hasColorTex) fmt::print(out, FMT_STRING("Texture2D colorTex : register(t{});"), nextTex++); out << '\n'; // Tex0 * kColor0 * Tex1 + Tex2 out << "#define COMBINER_EXPRS "; if (info.m_hasPatternTex1 && info.m_hasPatternTex2) { out << "colorOut = patternTex1.Sample(samp, vtf.uvs[0]) * kColor0 * " "patternTex2.Sample(samp, vtf.uvs[1]);"; } else { out << "colorOut = float4(0.0);"; } if (info.m_hasColorTex) { out << "colorOut += colorTex.Sample(samp, vtf.uvs[2]);"; } out << "colorOut.a = kColor0.a;\n"; out << "#define IS_ADDITIVE 0\n"; out << FSDoor; return out.str(); } template <> std::string StageObject_CFluidPlaneDoorShader::BuildShader( const SFluidPlaneDoorShaderInfo& in) { return _BuildVS(in); } template <> std::string StageObject_CFluidPlaneDoorShader::BuildShader( const SFluidPlaneDoorShaderInfo& in) { return _BuildFS(in); }