/* -*- c++ -*- (enables emacs c++ mode) */
/*===========================================================================

 Copyright (C) 2002-2017 Yves Renard

 This file is a part of GetFEM++

 GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
 under  the  terms  of the  GNU  Lesser General Public License as published
 by  the  Free Software Foundation;  either version 3 of the License,  or
 (at your option) any later version along with the GCC Runtime Library
 Exception either version 3.1 or (at your option) any later version.
 This program  is  distributed  in  the  hope  that it will be useful,  but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License and GCC Runtime Library Exception for more details.
 You  should  have received a copy of the GNU Lesser General Public License
 along  with  this program;  if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.

 As a special exception, you  may use  this file  as it is a part of a free
 software  library  without  restriction.  Specifically,  if   other  files
 instantiate  templates  or  use macros or inline functions from this file,
 or  you compile this  file  and  link  it  with other files  to produce an
 executable, this file  does  not  by itself cause the resulting executable
 to be covered  by the GNU Lesser General Public License.  This   exception
 does not  however  invalidate  any  other  reasons why the executable file
 might be covered by the GNU Lesser General Public License.

===========================================================================*/

/**@file gmm_sub_index.h
   @author  Yves Renard <Yves.Renard@insa-lyon.fr>
   @date October 13, 2002.
   @brief sub-indices.
*/

#ifndef GMM_SUB_INDEX_H__
#define GMM_SUB_INDEX_H__

#include "gmm_def.h"

namespace gmm {

  /* ******************************************************************** */
  /*		sub indices                               		  */
  /* ******************************************************************** */

  struct basic_index : public std::vector<size_t> {
    
    mutable size_type nb_ref;
    // size_type key1; faire la somme des composantes
    // const basic_index *rind; rindex s'il existe
    

    size_t operator[](size_type i) const {
      return (i < size()) ? std::vector<size_t>::operator[](i) : size_type(-1);
    }
    
    basic_index() : nb_ref(1) {}
    basic_index(size_type j) : std::vector<size_t>(j), nb_ref(1) {}
    template <typename IT> basic_index(IT b, IT e)
      : std::vector<size_t>(e-b), nb_ref(1) { std::copy(b, e, begin()); }
    basic_index(const basic_index *pbi) : nb_ref(1) {
      const_iterator it = pbi->begin(), ite = pbi->end();
      size_type i = 0;
      for ( ; it != ite; ++it) i = std::max(i, *it);
      resize(i+1); std::fill(begin(), end(), size_type(-1));
      for (it = pbi->begin(), i = 0; it != ite; ++it, ++i)
	std::vector<size_t>::operator[](*it) = i;
    }
    void swap(size_type i, size_type j) {
      std::swap(std::vector<size_t>::operator[](i),
		std::vector<size_t>::operator[](j));
    }
    
  };

  typedef basic_index *pbasic_index;

  struct index_generator {

    template <typename IT> static pbasic_index create_index(IT begin, IT end)
    { return new basic_index(begin, end); }
    static pbasic_index create_rindex(pbasic_index pbi)
    { return new basic_index(pbi); }
    static void attach(pbasic_index pbi) { if (pbi) pbi->nb_ref++; }
    static void unattach(pbasic_index pbi)
      { if (pbi && --(pbi->nb_ref) == 0) delete pbi; }

  };

  struct sub_index {

    size_type first_, last_;
    typedef basic_index base_type;
    typedef base_type::const_iterator const_iterator;

    mutable pbasic_index ind;
    mutable pbasic_index rind;

    void comp_extr(void) {
      std::vector<size_t>::const_iterator it = ind->begin(), ite = ind->end();
      if (it != ite) { first_=last_= *it; ++it; } else { first_=last_= 0; }
      for (; it != ite; ++it) 
	{ first_ = std::min(first_, *it); last_ = std::max(last_, *it); }
    }

    inline void test_rind(void) const
    { if (!rind) rind = index_generator::create_rindex(ind); }
    size_type size(void) const { return ind->size(); }
    size_type first(void) const { return first_; }
    size_type last(void) const { return last_; }
    size_type index(size_type i) const { return (*ind)[i]; }
    size_type rindex(size_type i) const {
      test_rind();
      if (i < rind->size()) return (*rind)[i]; else return size_type(-1);
    }
   
    const_iterator  begin(void) const { return  ind->begin(); }
    const_iterator    end(void) const { return  ind->end();   }
    const_iterator rbegin(void) const { test_rind(); return rind->begin(); }
    const_iterator   rend(void) const { test_rind(); return rind->end();   }

    sub_index() : ind(0), rind(0) {}
    template <typename IT> sub_index(IT it, IT ite)
      : ind(index_generator::create_index(it, ite)),
	rind(0) { comp_extr(); }
    template <typename CONT> sub_index(const CONT &c)
      : ind(index_generator::create_index(c.begin(), c.end())),
	rind(0) { comp_extr(); }
    ~sub_index() {
      index_generator::unattach(rind);
      index_generator::unattach(ind);
    }
    sub_index(const sub_index &si) : first_(si.first_), last_(si.last_),
				     ind(si.ind), rind(si.rind)
    { index_generator::attach(rind); index_generator::attach(ind); }
    sub_index &operator =(const sub_index &si) {
      index_generator::unattach(rind);
      index_generator::unattach(ind);
      ind = si.ind; rind = si.rind;
      index_generator::attach(rind);
      index_generator::attach(ind);
      first_ = si.first_; last_ = si.last_;
      return *this;
    }
  };

  struct unsorted_sub_index : public sub_index {
    typedef basic_index base_type;
    typedef base_type::const_iterator const_iterator;
    
    template <typename IT> unsorted_sub_index(IT it, IT ite)
      : sub_index(it, ite) {}
    template <typename CONT> unsorted_sub_index(const CONT &c)
      : sub_index(c) {}
    unsorted_sub_index() {}
    unsorted_sub_index(const unsorted_sub_index &si) : sub_index((const sub_index &)(si)) { }
    unsorted_sub_index &operator =(const unsorted_sub_index &si)
    { sub_index::operator =(si); return *this; }
    void swap(size_type i, size_type j) {
      GMM_ASSERT2(ind->nb_ref <= 1, "Operation not allowed on this index");
      if (rind) rind->swap((*ind)[i], (*ind)[j]);
      ind->swap(i, j);
    }
  };

  inline std::ostream &operator << (std::ostream &o, const sub_index &si) { 
    o << "sub_index(";
    if (si.size() != 0) o << si.index(0);
    for (size_type i = 1; i < si.size(); ++i) o << ", " << si.index(i);
    o << ")";
    return o;
  }

  struct sub_interval {
    size_type min, max; 

    size_type size(void) const { return max - min; }
    size_type first(void) const { return min; }
    size_type last(void) const { return max; }
    size_type index(size_type i) const { return min + i; }
    size_type step(void) const { return 1; }
    size_type rindex(size_type i) const
    { if (i >= min && i < max) return i - min; return size_type(-1); }
    sub_interval(size_type mi, size_type l) : min(mi), max(mi+l) {}
    sub_interval() {}
  };

  inline std::ostream &operator << (std::ostream &o, const sub_interval &si)
  { o << "sub_interval(" << si.min << ", " << si.size() << ")"; return o; }

  struct sub_slice {
    size_type min, max, N;

    size_type size(void) const { return (max - min) / N; }
    size_type first(void) const { return min; }
    size_type last(void) const { return (min == max) ? max : max+1-N; }
    size_type step(void) const { return N; }
    size_type index(size_type i) const { return min + N * i; }
    size_type rindex(size_type i) const { 
      if (i >= min && i < max)
	{ size_type j = (i - min); if (j % N == 0) return j / N; }
      return size_type(-1);
    }
    sub_slice(size_type mi, size_type l, size_type n)
      : min(mi), max(mi+l*n), N(n) {}
    sub_slice(void) {}
  };

  inline std::ostream &operator << (std::ostream &o, const sub_slice &si) {
    o << "sub_slice(" << si.min << ", " << si.size() << ", " << si.step() 
      << ")"; return o;
  }

  template<class SUBI> struct index_is_sorted
  {  typedef linalg_true bool_type; };
  template<> struct index_is_sorted<unsorted_sub_index>
  {  typedef linalg_false bool_type; };

}

#endif //  GMM_SUB_INDEX_H__