#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "logvisor/logvisor.hpp" #include "hecl/Blender/Connection.hpp" #include "hecl/SteamFinder.hpp" #include "MeshOptimizer.hpp" #if _WIN32 #include #include #endif #undef min #undef max namespace std { template <> struct hash> { size_t operator()(const std::pair& val) const noexcept { /* this will potentially truncate the second value if 32-bit size_t, * however, its application here is intended to operate in 16-bit indices */ return val.first | (val.second << 16); } }; } // namespace std using namespace std::literals; namespace hecl::blender { logvisor::Module BlenderLog("hecl::blender::Connection"); Token SharedBlenderToken; #ifdef __APPLE__ #define DEFAULT_BLENDER_BIN "/Applications/Blender.app/Contents/MacOS/blender" #else #define DEFAULT_BLENDER_BIN "blender-2.8" #endif extern "C" uint8_t HECL_BLENDERSHELL[]; extern "C" size_t HECL_BLENDERSHELL_SZ; extern "C" uint8_t HECL_ADDON[]; extern "C" size_t HECL_ADDON_SZ; extern "C" uint8_t HECL_STARTUP[]; extern "C" size_t HECL_STARTUP_SZ; static void InstallBlendershell(const SystemChar* path) { FILE* fp = hecl::Fopen(path, _SYS_STR("w")); if (!fp) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("unable to open {} for writing")), path); fwrite(HECL_BLENDERSHELL, 1, HECL_BLENDERSHELL_SZ, fp); fclose(fp); } static void InstallAddon(const SystemChar* path) { FILE* fp = hecl::Fopen(path, _SYS_STR("wb")); if (!fp) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("Unable to install blender addon at '{}'")), path); fwrite(HECL_ADDON, 1, HECL_ADDON_SZ, fp); fclose(fp); } static int Read(int fd, void* buf, size_t size) { int intrCount = 0; do { auto ret = read(fd, buf, size); if (ret < 0) { if (errno == EINTR) ++intrCount; else return -1; } else return ret; } while (intrCount < 1000); return -1; } static int Write(int fd, const void* buf, size_t size) { int intrCount = 0; do { auto ret = write(fd, buf, size); if (ret < 0) { if (errno == EINTR) ++intrCount; else return -1; } else return ret; } while (intrCount < 1000); return -1; } uint32_t Connection::_readStr(char* buf, uint32_t bufSz) { uint32_t readLen; int ret = Read(m_readpipe[0], &readLen, 4); if (ret < 4) { BlenderLog.report(logvisor::Error, fmt("Pipe error {} {}"), ret, strerror(errno)); _blenderDied(); return 0; } if (readLen >= bufSz) { BlenderLog.report(logvisor::Fatal, fmt("Pipe buffer overrun [{}/{}]"), readLen, bufSz); *buf = '\0'; return 0; } ret = Read(m_readpipe[0], buf, readLen); if (ret < 0) { BlenderLog.report(logvisor::Fatal, fmt("{}"), strerror(errno)); return 0; } else if (readLen >= 9) { if (!memcmp(buf, "EXCEPTION", std::min(readLen, uint32_t(9)))) { _blenderDied(); return 0; } } *(buf + readLen) = '\0'; return readLen; } uint32_t Connection::_writeStr(const char* buf, uint32_t len, int wpipe) { int ret, nlerr; nlerr = Write(wpipe, &len, 4); if (nlerr < 4) goto err; ret = Write(wpipe, buf, len); if (ret < 0) goto err; return (uint32_t)ret; err: _blenderDied(); return 0; } size_t Connection::_readBuf(void* buf, size_t len) { uint8_t* cBuf = reinterpret_cast(buf); size_t readLen = 0; do { int ret = Read(m_readpipe[0], cBuf, len); if (ret < 0) goto err; if (len >= 9) if (!memcmp((char*)cBuf, "EXCEPTION", std::min(len, size_t(9)))) _blenderDied(); readLen += ret; cBuf += ret; len -= ret; } while (len); return readLen; err: _blenderDied(); return 0; } size_t Connection::_writeBuf(const void* buf, size_t len) { const uint8_t* cBuf = reinterpret_cast(buf); size_t writeLen = 0; do { int ret = Write(m_writepipe[1], cBuf, len); if (ret < 0) goto err; writeLen += ret; cBuf += ret; len -= ret; } while (len); return writeLen; err: _blenderDied(); return 0; } void Connection::_closePipe() { close(m_readpipe[0]); close(m_writepipe[1]); #ifdef _WIN32 CloseHandle(m_pinfo.hProcess); CloseHandle(m_pinfo.hThread); m_consoleThreadRunning = false; if (m_consoleThread.joinable()) m_consoleThread.join(); #endif } void Connection::_blenderDied() { std::this_thread::sleep_for(std::chrono::milliseconds(100)); FILE* errFp = hecl::Fopen(m_errPath.c_str(), _SYS_STR("r")); if (errFp) { fseek(errFp, 0, SEEK_END); int64_t len = hecl::FTell(errFp); if (len) { fseek(errFp, 0, SEEK_SET); std::unique_ptr buf(new char[len + 1]); memset(buf.get(), 0, len + 1); fread(buf.get(), 1, len, errFp); BlenderLog.report(logvisor::Fatal, fmt("\n{:.{}s}"), buf.get(), len); } } BlenderLog.report(logvisor::Fatal, fmt("Blender Exception")); } static std::atomic_bool BlenderFirstInit(false); #if _WIN32 static bool RegFileExists(const hecl::SystemChar* path) { if (!path) return false; hecl::Sstat theStat; return !hecl::Stat(path, &theStat) && S_ISREG(theStat.st_mode); } #endif Connection::Connection(int verbosityLevel) { #if !WINDOWS_STORE if (hecl::VerbosityLevel >= 1) BlenderLog.report(logvisor::Info, fmt("Establishing BlenderConnection...")); /* Put hecl_blendershell.py in temp dir */ const SystemChar* TMPDIR = GetTmpDir(); #ifndef _WIN32 signal(SIGPIPE, SIG_IGN); #endif hecl::SystemString blenderShellPath(TMPDIR); blenderShellPath += _SYS_STR("/hecl_blendershell.py"); hecl::SystemString blenderAddonPath(TMPDIR); blenderAddonPath += _SYS_STR("/hecl_blenderaddon.zip"); bool FalseCmp = false; if (BlenderFirstInit.compare_exchange_strong(FalseCmp, true)) { InstallBlendershell(blenderShellPath.c_str()); InstallAddon(blenderAddonPath.c_str()); } int installAttempt = 0; while (true) { /* Construct communication pipes */ #if _WIN32 _pipe(m_readpipe, 2048, _O_BINARY); _pipe(m_writepipe, 2048, _O_BINARY); HANDLE writehandle = HANDLE(_get_osfhandle(m_writepipe[0])); SetHandleInformation(writehandle, HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT); HANDLE readhandle = HANDLE(_get_osfhandle(m_readpipe[1])); SetHandleInformation(readhandle, HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT); SECURITY_ATTRIBUTES sattrs = {sizeof(SECURITY_ATTRIBUTES), NULL, TRUE}; HANDLE consoleOutReadTmp, consoleOutWrite, consoleErrWrite, consoleOutRead; if (!CreatePipe(&consoleOutReadTmp, &consoleOutWrite, &sattrs, 1024)) BlenderLog.report(logvisor::Fatal, fmt("Error with CreatePipe")); if (!DuplicateHandle(GetCurrentProcess(), consoleOutWrite, GetCurrentProcess(), &consoleErrWrite, 0, TRUE, DUPLICATE_SAME_ACCESS)) BlenderLog.report(logvisor::Fatal, fmt("Error with DuplicateHandle")); if (!DuplicateHandle(GetCurrentProcess(), consoleOutReadTmp, GetCurrentProcess(), &consoleOutRead, // Address of new handle. 0, FALSE, // Make it uninheritable. DUPLICATE_SAME_ACCESS)) BlenderLog.report(logvisor::Fatal, fmt("Error with DupliateHandle")); if (!CloseHandle(consoleOutReadTmp)) BlenderLog.report(logvisor::Fatal, fmt("Error with CloseHandle")); #else pipe(m_readpipe); pipe(m_writepipe); #endif /* User-specified blender path */ #if _WIN32 std::wstring blenderBinBuf; const wchar_t* blenderBin = _wgetenv(L"BLENDER_BIN"); #else const char* blenderBin = getenv("BLENDER_BIN"); #endif /* Steam blender */ hecl::SystemString steamBlender; /* Child process of blender */ #if _WIN32 if (!blenderBin || !RegFileExists(blenderBin)) { /* Environment not set; try steam */ steamBlender = hecl::FindCommonSteamApp(_SYS_STR("Blender")); if (steamBlender.size()) { steamBlender += _SYS_STR("\\blender.exe"); blenderBin = steamBlender.c_str(); } if (!RegFileExists(blenderBin)) { /* No steam; try default */ wchar_t progFiles[256]; if (!GetEnvironmentVariableW(L"ProgramFiles", progFiles, 256)) BlenderLog.report(logvisor::Fatal, fmt(L"unable to determine 'Program Files' path")); blenderBinBuf = fmt::format(fmt(L"{}\\Blender Foundation\\Blender\\blender.exe"), progFiles); blenderBin = blenderBinBuf.c_str(); if (!RegFileExists(blenderBin)) BlenderLog.report(logvisor::Fatal, fmt(L"unable to find blender.exe")); } } std::wstring cmdLine = fmt::format(fmt(L" --background -P \"{}\" -- {} {} {} \"{}\""), blenderShellPath, uintptr_t(writehandle), uintptr_t(readhandle), verbosityLevel, blenderAddonPath); STARTUPINFO sinfo = {sizeof(STARTUPINFO)}; HANDLE nulHandle = CreateFileW(L"nul", GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, &sattrs, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); sinfo.dwFlags = STARTF_USESTDHANDLES; sinfo.hStdInput = nulHandle; if (verbosityLevel == 0) { sinfo.hStdError = nulHandle; sinfo.hStdOutput = nulHandle; } else { sinfo.hStdError = consoleErrWrite; sinfo.hStdOutput = consoleOutWrite; } if (!CreateProcessW(blenderBin, const_cast(cmdLine.c_str()), NULL, NULL, TRUE, NORMAL_PRIORITY_CLASS, NULL, NULL, &sinfo, &m_pinfo)) { LPWSTR messageBuffer = nullptr; FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPWSTR)&messageBuffer, 0, NULL); BlenderLog.report(logvisor::Fatal, fmt(L"unable to launch blender from {}: {}"), blenderBin, messageBuffer); } close(m_writepipe[0]); close(m_readpipe[1]); CloseHandle(nulHandle); CloseHandle(consoleErrWrite); CloseHandle(consoleOutWrite); m_consoleThreadRunning = true; m_consoleThread = std::thread([=]() { CHAR lpBuffer[1024]; DWORD nBytesRead; DWORD nCharsWritten; while (m_consoleThreadRunning) { if (!ReadFile(consoleOutRead, lpBuffer, sizeof(lpBuffer), &nBytesRead, NULL) || !nBytesRead) { DWORD err = GetLastError(); if (err == ERROR_BROKEN_PIPE) break; // pipe done - normal exit path. else BlenderLog.report(logvisor::Error, fmt("Error with ReadFile: {:08X}"), err); // Something bad happened. } // Display the character read on the screen. auto lk = logvisor::LockLog(); if (!WriteConsoleA(GetStdHandle(STD_OUTPUT_HANDLE), lpBuffer, nBytesRead, &nCharsWritten, NULL)) { // BlenderLog.report(logvisor::Error, fmt("Error with WriteConsole: %08X"), GetLastError()); } } CloseHandle(consoleOutRead); }); #else pid_t pid = fork(); if (!pid) { /* Close all file descriptors besides those this blender instance uses */ int upper_fd = std::max(m_writepipe[0], m_readpipe[1]); for (int i = 3; i < upper_fd; ++i) { if (i != m_writepipe[0] && i != m_readpipe[1]) close(i); } closefrom(upper_fd + 1); if (verbosityLevel == 0) { int devNull = open("/dev/null", O_WRONLY); dup2(devNull, STDOUT_FILENO); dup2(devNull, STDERR_FILENO); close(devNull); } std::string errbuf; std::string readfds = fmt::format(fmt("{}"), m_writepipe[0]); std::string writefds = fmt::format(fmt("{}"), m_readpipe[1]); std::string vLevel = fmt::format(fmt("{}"), verbosityLevel); /* Try user-specified blender first */ if (blenderBin) { execlp(blenderBin, blenderBin, "--background", "-P", blenderShellPath.c_str(), "--", readfds.c_str(), writefds.c_str(), vLevel.c_str(), blenderAddonPath.c_str(), NULL); if (errno != ENOENT) { errbuf = fmt::format(fmt("NOLAUNCH {}"), strerror(errno)); _writeStr(errbuf.c_str(), errbuf.size(), m_readpipe[1]); exit(1); } } /* Try steam */ steamBlender = hecl::FindCommonSteamApp(_SYS_STR("Blender")); if (steamBlender.size()) { #ifdef __APPLE__ steamBlender += "/blender.app/Contents/MacOS/blender"; #else steamBlender += "/blender"; #endif blenderBin = steamBlender.c_str(); execlp(blenderBin, blenderBin, "--background", "-P", blenderShellPath.c_str(), "--", readfds.c_str(), writefds.c_str(), vLevel.c_str(), blenderAddonPath.c_str(), NULL); if (errno != ENOENT) { errbuf = fmt::format(fmt("NOLAUNCH {}"), strerror(errno)); _writeStr(errbuf.c_str(), errbuf.size(), m_readpipe[1]); exit(1); } } /* Otherwise default blender */ execlp(DEFAULT_BLENDER_BIN, DEFAULT_BLENDER_BIN, "--background", "-P", blenderShellPath.c_str(), "--", readfds.c_str(), writefds.c_str(), vLevel.c_str(), blenderAddonPath.c_str(), NULL); if (errno != ENOENT) { errbuf = fmt::format(fmt("NOLAUNCH {}"), strerror(errno)); _writeStr(errbuf.c_str(), errbuf.size(), m_readpipe[1]); exit(1); } /* Unable to find blender */ _writeStr("NOBLENDER", 9, m_readpipe[1]); exit(1); } close(m_writepipe[0]); close(m_readpipe[1]); m_blenderProc = pid; #endif /* Stash error path and unlink existing file */ #if _WIN32 m_errPath = hecl::SystemString(TMPDIR) + fmt::format(fmt(_SYS_STR("/hecl_{:016X}.derp")), (unsigned long long)m_pinfo.dwProcessId); #else m_errPath = hecl::SystemString(TMPDIR) + fmt::format(fmt(_SYS_STR("/hecl_{:016X}.derp")), (unsigned long long)m_blenderProc); #endif hecl::Unlink(m_errPath.c_str()); /* Handle first response */ char lineBuf[256]; _readStr(lineBuf, sizeof(lineBuf)); if (!strncmp(lineBuf, "NOLAUNCH", 8)) { _closePipe(); BlenderLog.report(logvisor::Fatal, fmt("Unable to launch blender: {}"), lineBuf + 9); } else if (!strncmp(lineBuf, "NOBLENDER", 9)) { _closePipe(); #if _WIN32 BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("Unable to find blender at '{}'")), blenderBin); #else if (blenderBin) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("Unable to find blender at '{}' or '{}'")), blenderBin, DEFAULT_BLENDER_BIN); else BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("Unable to find blender at '{}'")), DEFAULT_BLENDER_BIN); #endif } else if (!strcmp(lineBuf, "NOT280")) { _closePipe(); BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("Installed blender version must be >= 2.80"))); } else if (!strcmp(lineBuf, "NOADDON")) { _closePipe(); if (blenderAddonPath != _SYS_STR("SKIPINSTALL")) InstallAddon(blenderAddonPath.c_str()); ++installAttempt; if (installAttempt >= 2) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("unable to install blender addon using '{}'")), blenderAddonPath.c_str()); continue; } else if (!strcmp(lineBuf, "ADDONINSTALLED")) { _closePipe(); blenderAddonPath = _SYS_STR("SKIPINSTALL"); continue; } else if (strcmp(lineBuf, "READY")) { _closePipe(); BlenderLog.report(logvisor::Fatal, fmt("read '{}' from blender; expected 'READY'"), lineBuf); } _writeStr("ACK"); break; } #else BlenderLog.report(logvisor::Fatal, fmt("BlenderConnection not available on UWP")); #endif } Connection::~Connection() { _closePipe(); } void Vector2f::read(Connection& conn) { conn._readBuf(&val, 8); } void Vector3f::read(Connection& conn) { conn._readBuf(&val, 12); } void Vector4f::read(Connection& conn) { conn._readBuf(&val, 16); } void Matrix4f::read(Connection& conn) { conn._readBuf(&val, 64); } void Index::read(Connection& conn) { conn._readBuf(&val, 4); } void Float::read(Connection& conn) { conn._readBuf(&val, 4); } void Boolean::read(Connection& conn) { conn._readBuf(&val, 1); } std::streambuf::int_type PyOutStream::StreamBuf::overflow(int_type ch) { if (!m_parent.m_parent || !m_parent.m_parent->m_lock) BlenderLog.report(logvisor::Fatal, fmt("lock not held for PyOutStream writing")); if (ch != traits_type::eof() && ch != '\n' && ch != '\0') { m_lineBuf += char_type(ch); return ch; } // printf("FLUSHING %s\n", m_lineBuf.c_str()); m_parent.m_parent->_writeStr(m_lineBuf); char readBuf[16]; m_parent.m_parent->_readStr(readBuf, 16); if (strcmp(readBuf, "OK")) { if (m_deleteOnError) m_parent.m_parent->deleteBlend(); m_parent.m_parent->_blenderDied(); } m_lineBuf.clear(); return ch; } static const char* BlendTypeStrs[] = {"NONE", "MESH", "CMESH", "ACTOR", "AREA", "WORLD", "MAPAREA", "MAPUNIVERSE", "FRAME", "PATH", nullptr}; bool Connection::createBlend(const ProjectPath& path, BlendType type) { if (m_lock) { BlenderLog.report(logvisor::Fatal, fmt("BlenderConnection::createBlend() musn't be called with stream active")); return false; } _writeStr(fmt::format(fmt("CREATE \"{}\" {}"), path.getAbsolutePathUTF8(), BlendTypeStrs[int(type)])); char lineBuf[256]; _readStr(lineBuf, sizeof(lineBuf)); if (!strcmp(lineBuf, "FINISHED")) { /* Delete immediately in case save doesn't occur */ hecl::Unlink(path.getAbsolutePath().data()); m_loadedBlend = path; m_loadedType = type; return true; } return false; } bool Connection::openBlend(const ProjectPath& path, bool force) { if (m_lock) { BlenderLog.report(logvisor::Fatal, fmt("BlenderConnection::openBlend() musn't be called with stream active")); return false; } if (!force && path == m_loadedBlend) return true; _writeStr(fmt::format(fmt("OPEN \"{}\""), path.getAbsolutePathUTF8())); char lineBuf[256]; _readStr(lineBuf, sizeof(lineBuf)); if (!strcmp(lineBuf, "FINISHED")) { m_loadedBlend = path; _writeStr("GETTYPE"); _readStr(lineBuf, sizeof(lineBuf)); m_loadedType = BlendType::None; unsigned idx = 0; while (BlendTypeStrs[idx]) { if (!strcmp(BlendTypeStrs[idx], lineBuf)) { m_loadedType = BlendType(idx); break; } ++idx; } m_loadedRigged = false; if (m_loadedType == BlendType::Mesh) { _writeStr("GETMESHRIGGED"); _readStr(lineBuf, sizeof(lineBuf)); if (!strcmp("TRUE", lineBuf)) m_loadedRigged = true; } return true; } return false; } bool Connection::saveBlend() { if (m_lock) { BlenderLog.report(logvisor::Fatal, fmt("BlenderConnection::saveBlend() musn't be called with stream active")); return false; } _writeStr("SAVE"); char lineBuf[256]; _readStr(lineBuf, sizeof(lineBuf)); if (!strcmp(lineBuf, "FINISHED")) return true; return false; } void Connection::deleteBlend() { if (m_loadedBlend) { hecl::Unlink(m_loadedBlend.getAbsolutePath().data()); BlenderLog.report(logvisor::Info, fmt(_SYS_STR("Deleted '{}'")), m_loadedBlend.getAbsolutePath()); m_loadedBlend = ProjectPath(); } } PyOutStream::PyOutStream(Connection* parent, bool deleteOnError) : std::ostream(&m_sbuf), m_parent(parent), m_sbuf(*this, deleteOnError) { m_parent->m_pyStreamActive = true; m_parent->_writeStr("PYBEGIN"); char readBuf[16]; m_parent->_readStr(readBuf, 16); if (strcmp(readBuf, "READY")) BlenderLog.report(logvisor::Fatal, fmt("unable to open PyOutStream with blender")); } void PyOutStream::close() { if (m_parent && m_parent->m_lock) { m_parent->_writeStr("PYEND"); char readBuf[16]; m_parent->_readStr(readBuf, 16); if (strcmp(readBuf, "DONE")) BlenderLog.report(logvisor::Fatal, fmt("unable to close PyOutStream with blender")); m_parent->m_pyStreamActive = false; m_parent->m_lock = false; } } void PyOutStream::linkBlend(const char* target, const char* objName, bool link) { format(fmt( "if '{}' not in bpy.data.scenes:\n" " with bpy.data.libraries.load('''{}''', link={}, relative=True) as (data_from, data_to):\n" " data_to.scenes = data_from.scenes\n" " obj_scene = None\n" " for scene in data_to.scenes:\n" " if scene.name == '{}':\n" " obj_scene = scene\n" " break\n" " if not obj_scene:\n" " raise RuntimeError('''unable to find {} in {}. try deleting it and restart the extract.''')\n" " obj = None\n" " for object in obj_scene.objects:\n" " if object.name == obj_scene.name:\n" " obj = object\n" "else:\n" " obj = bpy.data.objects['{}']\n" "\n"), objName, target, link ? "True" : "False", objName, objName, target, objName); } void PyOutStream::linkBackground(const char* target, const char* sceneName) { if (!sceneName) { format(fmt( "with bpy.data.libraries.load('''{}''', link=True, relative=True) as (data_from, data_to):\n" " data_to.scenes = data_from.scenes\n" "obj_scene = None\n" "for scene in data_to.scenes:\n" " obj_scene = scene\n" " break\n" "if not obj_scene:\n" " raise RuntimeError('''unable to find {}. try deleting it and restart the extract.''')\n" "\n" "bpy.context.scene.background_set = obj_scene\n"), target, target); } else { format(fmt( "if '{}' not in bpy.data.scenes:\n" " with bpy.data.libraries.load('''{}''', link=True, relative=True) as (data_from, data_to):\n" " data_to.scenes = data_from.scenes\n" " obj_scene = None\n" " for scene in data_to.scenes:\n" " if scene.name == '{}':\n" " obj_scene = scene\n" " break\n" " if not obj_scene:\n" " raise RuntimeError('''unable to find {} in {}. try deleting it and restart the extract.''')\n" "\n" "bpy.context.scene.background_set = bpy.data.scenes['{}']\n"), sceneName, target, sceneName, sceneName, target, sceneName); } } void PyOutStream::AABBToBMesh(const atVec3f& min, const atVec3f& max) { athena::simd_floats minf(min.simd); athena::simd_floats maxf(max.simd); format(fmt( "bm = bmesh.new()\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.ensure_lookup_table()\n" "bm.edges.new((bm.verts[0], bm.verts[1]))\n" "bm.edges.new((bm.verts[0], bm.verts[2]))\n" "bm.edges.new((bm.verts[0], bm.verts[4]))\n" "bm.edges.new((bm.verts[3], bm.verts[1]))\n" "bm.edges.new((bm.verts[3], bm.verts[2]))\n" "bm.edges.new((bm.verts[3], bm.verts[7]))\n" "bm.edges.new((bm.verts[5], bm.verts[1]))\n" "bm.edges.new((bm.verts[5], bm.verts[4]))\n" "bm.edges.new((bm.verts[5], bm.verts[7]))\n" "bm.edges.new((bm.verts[6], bm.verts[2]))\n" "bm.edges.new((bm.verts[6], bm.verts[4]))\n" "bm.edges.new((bm.verts[6], bm.verts[7]))\n"), minf[0], minf[1], minf[2], maxf[0], minf[1], minf[2], minf[0], maxf[1], minf[2], maxf[0], maxf[1], minf[2], minf[0], minf[1], maxf[2], maxf[0], minf[1], maxf[2], minf[0], maxf[1], maxf[2], maxf[0], maxf[1], maxf[2]); } void PyOutStream::centerView() { *this << "for obj in bpy.context.scene.objects:\n" " if obj.type == 'CAMERA' or obj.type == 'LIGHT':\n" " obj.hide_set(True)\n" "\n" "old_smooth_view = bpy.context.preferences.view.smooth_view\n" "bpy.context.preferences.view.smooth_view = 0\n" "for window in bpy.context.window_manager.windows:\n" " screen = window.screen\n" " for area in screen.areas:\n" " if area.type == 'VIEW_3D':\n" " for region in area.regions:\n" " if region.type == 'WINDOW':\n" " override = {'scene': bpy.context.scene, 'window': window, 'screen': screen, 'area': " "area, 'region': region}\n" " bpy.ops.view3d.view_all(override)\n" " break\n" "bpy.context.preferences.view.smooth_view = old_smooth_view\n" "\n" "for obj in bpy.context.scene.objects:\n" " if obj.type == 'CAMERA' or obj.type == 'LIGHT':\n" " obj.hide_set(True)\n"; } ANIMOutStream::ANIMOutStream(Connection* parent) : m_parent(parent) { m_parent->_writeStr("PYANIM"); char readBuf[16]; m_parent->_readStr(readBuf, 16); if (strcmp(readBuf, "ANIMREADY")) BlenderLog.report(logvisor::Fatal, fmt("unable to open ANIMOutStream")); } ANIMOutStream::~ANIMOutStream() { char tp = -1; m_parent->_writeBuf(&tp, 1); char readBuf[16]; m_parent->_readStr(readBuf, 16); if (strcmp(readBuf, "ANIMDONE")) BlenderLog.report(logvisor::Fatal, fmt("unable to close ANIMOutStream")); } void ANIMOutStream::changeCurve(CurveType type, unsigned crvIdx, unsigned keyCount) { if (m_curCount != m_totalCount) BlenderLog.report(logvisor::Fatal, fmt("incomplete ANIMOutStream for change")); m_curCount = 0; m_totalCount = keyCount; char tp = char(type); m_parent->_writeBuf(&tp, 1); struct { uint32_t ci; uint32_t kc; } info = {uint32_t(crvIdx), uint32_t(keyCount)}; m_parent->_writeBuf(reinterpret_cast(&info), 8); m_inCurve = true; } void ANIMOutStream::write(unsigned frame, float val) { if (!m_inCurve) BlenderLog.report(logvisor::Fatal, fmt("changeCurve not called before write")); if (m_curCount < m_totalCount) { struct { uint32_t frm; float val; } key = {uint32_t(frame), val}; m_parent->_writeBuf(reinterpret_cast(&key), 8); ++m_curCount; } else BlenderLog.report(logvisor::Fatal, fmt("ANIMOutStream keyCount overflow")); } Mesh::SkinBind::SkinBind(Connection& conn) { vg_idx = Index(conn).val; weight = Float(conn).val; } void Mesh::normalizeSkinBinds() { for (auto& skin : skins) { float accum = 0.f; for (const SkinBind& bind : skin) if (bind.valid()) accum += bind.weight; if (accum > FLT_EPSILON) { for (SkinBind& bind : skin) if (bind.valid()) bind.weight /= accum; } } } Mesh::Mesh(Connection& conn, HMDLTopology topologyIn, int skinSlotCount, bool useLuvs) : topology(topologyIn), sceneXf(conn), aabbMin(conn), aabbMax(conn) { Index matSetCount(conn); materialSets.reserve(matSetCount.val); for (uint32_t i = 0; i < matSetCount.val; ++i) { materialSets.emplace_back(); std::vector& materials = materialSets.back(); Index matCount(conn); materials.reserve(matCount.val); for (uint32_t j = 0; j < matCount.val; ++j) materials.emplace_back(conn); } MeshOptimizer opt(conn, materialSets[0], useLuvs); opt.optimize(*this, skinSlotCount); Index count(conn); boneNames.reserve(count.val); for (uint32_t i = 0; i < count; ++i) { char name[128]; conn._readStr(name, 128); boneNames.emplace_back(name); } if (boneNames.size()) for (Surface& s : surfaces) s.skinBankIdx = skinBanks.addSurface(*this, s, skinSlotCount); /* Custom properties */ Index propCount(conn); std::string keyBuf; std::string valBuf; for (uint32_t i = 0; i < propCount.val; ++i) { Index kLen(conn); keyBuf.assign(kLen.val, '\0'); conn._readBuf(&keyBuf[0], kLen.val); Index vLen(conn); valBuf.assign(vLen.val, '\0'); conn._readBuf(&valBuf[0], vLen.val); customProps[keyBuf] = valBuf; } /* Connect skinned verts to bank slots */ if (boneNames.size()) { for (Surface& surf : surfaces) { SkinBanks::Bank& bank = skinBanks.banks[surf.skinBankIdx]; for (Surface::Vert& vert : surf.verts) { if (vert.iPos == 0xffffffff) continue; for (uint32_t i = 0; i < bank.m_skinIdxs.size(); ++i) { if (bank.m_skinIdxs[i] == vert.iSkin) { vert.iBankSkin = i; break; } } } } } } Mesh Mesh::getContiguousSkinningVersion() const { Mesh newMesh = *this; newMesh.pos.clear(); newMesh.norm.clear(); newMesh.contiguousSkinVertCounts.clear(); newMesh.contiguousSkinVertCounts.reserve(skins.size()); for (size_t i = 0; i < skins.size(); ++i) { std::unordered_map, uint32_t> contigMap; size_t vertCount = 0; for (Surface& surf : newMesh.surfaces) { for (Surface::Vert& vert : surf.verts) { if (vert.iPos == 0xffffffff) continue; if (vert.iSkin == i) { auto key = std::make_pair(vert.iPos, vert.iNorm); auto search = contigMap.find(key); if (search != contigMap.end()) { vert.iPos = search->second; vert.iNorm = search->second; } else { uint32_t newIdx = newMesh.pos.size(); contigMap[key] = newIdx; newMesh.pos.push_back(pos.at(vert.iPos)); newMesh.norm.push_back(norm.at(vert.iNorm)); vert.iPos = newIdx; vert.iNorm = newIdx; ++vertCount; } } } } newMesh.contiguousSkinVertCounts.push_back(vertCount); } return newMesh; } template static T SwapFourCC(T fcc) { return T(hecl::SBig(std::underlying_type_t(fcc))); } Material::PASS::PASS(Connection& conn) { conn._readBuf(&type, 4); type = SwapFourCC(type); uint32_t bufSz; conn._readBuf(&bufSz, 4); std::string readStr(bufSz, ' '); conn._readBuf(&readStr[0], bufSz); SystemStringConv absolute(readStr); SystemString relative = conn.getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(absolute.sys_str()); tex.assign(conn.getBlendPath().getProject().getProjectWorkingPath(), relative); conn._readBuf(&source, 1); conn._readBuf(&uvAnimType, 1); uint32_t argCount; conn._readBuf(&argCount, 4); for (uint32_t i = 0; i < argCount; ++i) conn._readBuf(&uvAnimParms[i], 4); conn._readBuf(&alpha, 1); } Material::CLR::CLR(Connection& conn) { conn._readBuf(&type, 4); type = SwapFourCC(type); color.read(conn); } Material::Material(Connection& conn) { uint32_t bufSz; conn._readBuf(&bufSz, 4); name.assign(bufSz, ' '); conn._readBuf(&name[0], bufSz); conn._readBuf(&passIndex, 4); conn._readBuf(&shaderType, 4); shaderType = SwapFourCC(shaderType); uint32_t chunkCount; conn._readBuf(&chunkCount, 4); chunks.reserve(chunkCount); for (uint32_t i = 0; i < chunkCount; ++i) { ChunkType type; conn._readBuf(&type, 4); type = SwapFourCC(type); chunks.push_back(Chunk::Build(type, conn)); } uint32_t iPropCount; conn._readBuf(&iPropCount, 4); iprops.reserve(iPropCount); for (uint32_t i = 0; i < iPropCount; ++i) { conn._readBuf(&bufSz, 4); std::string readStr(bufSz, ' '); conn._readBuf(&readStr[0], bufSz); int32_t val; conn._readBuf(&val, 4); iprops[readStr] = val; } conn._readBuf(&blendMode, 4); } bool Mesh::Surface::Vert::operator==(const Vert& other) const { if (iPos != other.iPos) return false; if (iNorm != other.iNorm) return false; for (int i = 0; i < 4; ++i) if (iColor[i] != other.iColor[i]) return false; for (int i = 0; i < 8; ++i) if (iUv[i] != other.iUv[i]) return false; if (iSkin != other.iSkin) return false; return true; } static bool VertInBank(const std::vector& bank, uint32_t sIdx) { for (uint32_t idx : bank) if (sIdx == idx) return true; return false; } void Mesh::SkinBanks::Bank::addSkins(const Mesh& parent, const std::vector& skinIdxs) { for (uint32_t sidx : skinIdxs) { m_skinIdxs.push_back(sidx); for (const SkinBind& bind : parent.skins[sidx]) { if (!bind.valid()) break; bool found = false; for (uint32_t bidx : m_boneIdxs) { if (bidx == bind.vg_idx) { found = true; break; } } if (!found) m_boneIdxs.push_back(bind.vg_idx); } } } std::vector::iterator Mesh::SkinBanks::addSkinBank(int skinSlotCount) { banks.emplace_back(); if (skinSlotCount > 0) banks.back().m_skinIdxs.reserve(skinSlotCount); return banks.end() - 1; } uint32_t Mesh::SkinBanks::addSurface(const Mesh& mesh, const Surface& surf, int skinSlotCount) { if (banks.empty()) addSkinBank(skinSlotCount); std::vector toAdd; if (skinSlotCount > 0) toAdd.reserve(skinSlotCount); std::vector::iterator bankIt = banks.begin(); for (;;) { bool done = true; for (; bankIt != banks.end(); ++bankIt) { Bank& bank = *bankIt; done = true; for (const Surface::Vert& v : surf.verts) { if (v.iPos == 0xffffffff) continue; if (!VertInBank(bank.m_skinIdxs, v.iSkin) && !VertInBank(toAdd, v.iSkin)) { toAdd.push_back(v.iSkin); if (skinSlotCount > 0 && bank.m_skinIdxs.size() + toAdd.size() > size_t(skinSlotCount)) { toAdd.clear(); done = false; break; } } } if (toAdd.size()) { bank.addSkins(mesh, toAdd); toAdd.clear(); } if (done) return uint32_t(bankIt - banks.begin()); } if (!done) { bankIt = addSkinBank(skinSlotCount); continue; } break; } return uint32_t(-1); } ColMesh::ColMesh(Connection& conn) { uint32_t matCount; conn._readBuf(&matCount, 4); materials.reserve(matCount); for (uint32_t i = 0; i < matCount; ++i) materials.emplace_back(conn); uint32_t count; conn._readBuf(&count, 4); verts.reserve(count); for (uint32_t i = 0; i < count; ++i) verts.emplace_back(conn); conn._readBuf(&count, 4); edges.reserve(count); for (uint32_t i = 0; i < count; ++i) edges.emplace_back(conn); conn._readBuf(&count, 4); trianges.reserve(count); for (uint32_t i = 0; i < count; ++i) trianges.emplace_back(conn); } ColMesh::Material::Material(Connection& conn) { uint32_t nameLen; conn._readBuf(&nameLen, 4); if (nameLen) { name.assign(nameLen, '\0'); conn._readBuf(&name[0], nameLen); } conn._readBuf(&unknown, 42); } ColMesh::Edge::Edge(Connection& conn) { conn._readBuf(this, 9); } ColMesh::Triangle::Triangle(Connection& conn) { conn._readBuf(this, 17); } World::Area::Dock::Dock(Connection& conn) { verts[0].read(conn); verts[1].read(conn); verts[2].read(conn); verts[3].read(conn); targetArea.read(conn); targetDock.read(conn); } World::Area::Area(Connection& conn) { std::string name; uint32_t nameLen; conn._readBuf(&nameLen, 4); if (nameLen) { name.assign(nameLen, '\0'); conn._readBuf(&name[0], nameLen); } path.assign(conn.getBlendPath().getParentPath(), name); aabb[0].read(conn); aabb[1].read(conn); transform.read(conn); uint32_t dockCount; conn._readBuf(&dockCount, 4); docks.reserve(dockCount); for (uint32_t i = 0; i < dockCount; ++i) docks.emplace_back(conn); } World::World(Connection& conn) { uint32_t areaCount; conn._readBuf(&areaCount, 4); areas.reserve(areaCount); for (uint32_t i = 0; i < areaCount; ++i) areas.emplace_back(conn); } Light::Light(Connection& conn) : sceneXf(conn), color(conn) { conn._readBuf(&layer, 29); uint32_t nameLen; conn._readBuf(&nameLen, 4); if (nameLen) { name.assign(nameLen, '\0'); conn._readBuf(&name[0], nameLen); } } MapArea::Surface::Surface(Connection& conn) { centerOfMass.read(conn); normal.read(conn); conn._readBuf(&start, 8); uint32_t borderCount; conn._readBuf(&borderCount, 4); borders.reserve(borderCount); for (uint32_t i = 0; i < borderCount; ++i) { borders.emplace_back(); std::pair& idx = borders.back(); conn._readBuf(&idx, 8); } } MapArea::POI::POI(Connection& conn) { conn._readBuf(&type, 12); xf.read(conn); } MapArea::MapArea(Connection& conn) { visType.read(conn); uint32_t vertCount; conn._readBuf(&vertCount, 4); verts.reserve(vertCount); for (uint32_t i = 0; i < vertCount; ++i) verts.emplace_back(conn); uint8_t isIdx; conn._readBuf(&isIdx, 1); while (isIdx) { indices.emplace_back(conn); conn._readBuf(&isIdx, 1); } uint32_t surfCount; conn._readBuf(&surfCount, 4); surfaces.reserve(surfCount); for (uint32_t i = 0; i < surfCount; ++i) surfaces.emplace_back(conn); uint32_t poiCount; conn._readBuf(&poiCount, 4); pois.reserve(poiCount); for (uint32_t i = 0; i < poiCount; ++i) pois.emplace_back(conn); } MapUniverse::World::World(Connection& conn) { uint32_t nameLen; conn._readBuf(&nameLen, 4); if (nameLen) { name.assign(nameLen, '\0'); conn._readBuf(&name[0], nameLen); } xf.read(conn); uint32_t hexCount; conn._readBuf(&hexCount, 4); hexagons.reserve(hexCount); for (uint32_t i = 0; i < hexCount; ++i) hexagons.emplace_back(conn); color.read(conn); uint32_t pathLen; conn._readBuf(&pathLen, 4); if (pathLen) { std::string path; path.assign(pathLen, '\0'); conn._readBuf(&path[0], pathLen); hecl::SystemStringConv sysPath(path); worldPath.assign(conn.getBlendPath().getProject().getProjectWorkingPath(), sysPath.sys_str()); } } MapUniverse::MapUniverse(Connection& conn) { uint32_t pathLen; conn._readBuf(&pathLen, 4); if (pathLen) { std::string path; path.assign(pathLen, '\0'); conn._readBuf(&path[0], pathLen); hecl::SystemStringConv sysPath(path); SystemString pathRel = conn.getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(sysPath.sys_str()); hexagonPath.assign(conn.getBlendPath().getProject().getProjectWorkingPath(), pathRel); } uint32_t worldCount; conn._readBuf(&worldCount, 4); worlds.reserve(worldCount); for (uint32_t i = 0; i < worldCount; ++i) worlds.emplace_back(conn); } Actor::Actor(Connection& conn) { uint32_t armCount; conn._readBuf(&armCount, 4); armatures.reserve(armCount); for (uint32_t i = 0; i < armCount; ++i) armatures.emplace_back(conn); uint32_t subtypeCount; conn._readBuf(&subtypeCount, 4); subtypes.reserve(subtypeCount); for (uint32_t i = 0; i < subtypeCount; ++i) subtypes.emplace_back(conn); uint32_t attachmentCount; conn._readBuf(&attachmentCount, 4); attachments.reserve(attachmentCount); for (uint32_t i = 0; i < attachmentCount; ++i) attachments.emplace_back(conn); uint32_t actionCount; conn._readBuf(&actionCount, 4); actions.reserve(actionCount); for (uint32_t i = 0; i < actionCount; ++i) actions.emplace_back(conn); } PathMesh::PathMesh(Connection& conn) { uint32_t dataSize; conn._readBuf(&dataSize, 4); data.resize(dataSize); conn._readBuf(data.data(), dataSize); } const Bone* Armature::lookupBone(const char* name) const { for (const Bone& b : bones) if (!b.name.compare(name)) return &b; return nullptr; } const Bone* Armature::getParent(const Bone* bone) const { if (bone->parent < 0) return nullptr; return &bones[bone->parent]; } const Bone* Armature::getChild(const Bone* bone, size_t child) const { if (child >= bone->children.size()) return nullptr; int32_t cIdx = bone->children[child]; if (cIdx < 0) return nullptr; return &bones[cIdx]; } const Bone* Armature::getRoot() const { for (const Bone& b : bones) if (b.parent < 0) return &b; return nullptr; } Armature::Armature(Connection& conn) { uint32_t bufSz; conn._readBuf(&bufSz, 4); name.assign(bufSz, ' '); conn._readBuf(&name[0], bufSz); uint32_t boneCount; conn._readBuf(&boneCount, 4); bones.reserve(boneCount); for (uint32_t i = 0; i < boneCount; ++i) bones.emplace_back(conn); } Bone::Bone(Connection& conn) { uint32_t bufSz; conn._readBuf(&bufSz, 4); name.assign(bufSz, ' '); conn._readBuf(&name[0], bufSz); origin.read(conn); conn._readBuf(&parent, 4); uint32_t childCount; conn._readBuf(&childCount, 4); children.reserve(childCount); for (uint32_t i = 0; i < childCount; ++i) { children.emplace_back(0); conn._readBuf(&children.back(), 4); } } Actor::Subtype::Subtype(Connection& conn) { uint32_t bufSz; conn._readBuf(&bufSz, 4); name.assign(bufSz, ' '); conn._readBuf(&name[0], bufSz); std::string meshPath; conn._readBuf(&bufSz, 4); if (bufSz) { meshPath.assign(bufSz, ' '); conn._readBuf(&meshPath[0], bufSz); SystemStringConv meshPathAbs(meshPath); SystemString meshPathRel = conn.getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(meshPathAbs.sys_str()); mesh.assign(conn.getBlendPath().getProject().getProjectWorkingPath(), meshPathRel); } conn._readBuf(&armature, 4); uint32_t overlayCount; conn._readBuf(&overlayCount, 4); overlayMeshes.reserve(overlayCount); for (uint32_t i = 0; i < overlayCount; ++i) { std::string overlayName; conn._readBuf(&bufSz, 4); overlayName.assign(bufSz, ' '); conn._readBuf(&overlayName[0], bufSz); std::string meshPath; conn._readBuf(&bufSz, 4); if (bufSz) { meshPath.assign(bufSz, ' '); conn._readBuf(&meshPath[0], bufSz); SystemStringConv meshPathAbs(meshPath); SystemString meshPathRel = conn.getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(meshPathAbs.sys_str()); overlayMeshes.emplace_back(std::move(overlayName), ProjectPath(conn.getBlendPath().getProject().getProjectWorkingPath(), meshPathRel)); } } } Actor::Attachment::Attachment(Connection& conn) { uint32_t bufSz; conn._readBuf(&bufSz, 4); name.assign(bufSz, ' '); conn._readBuf(&name[0], bufSz); std::string meshPath; conn._readBuf(&bufSz, 4); if (bufSz) { meshPath.assign(bufSz, ' '); conn._readBuf(&meshPath[0], bufSz); SystemStringConv meshPathAbs(meshPath); SystemString meshPathRel = conn.getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(meshPathAbs.sys_str()); mesh.assign(conn.getBlendPath().getProject().getProjectWorkingPath(), meshPathRel); } conn._readBuf(&armature, 4); } Action::Action(Connection& conn) { uint32_t bufSz; conn._readBuf(&bufSz, 4); name.assign(bufSz, ' '); conn._readBuf(&name[0], bufSz); conn._readBuf(&interval, 4); conn._readBuf(&additive, 1); conn._readBuf(&looping, 1); uint32_t frameCount; conn._readBuf(&frameCount, 4); frames.reserve(frameCount); for (uint32_t i = 0; i < frameCount; ++i) { frames.emplace_back(); conn._readBuf(&frames.back(), 4); } uint32_t chanCount; conn._readBuf(&chanCount, 4); channels.reserve(chanCount); for (uint32_t i = 0; i < chanCount; ++i) channels.emplace_back(conn); uint32_t aabbCount; conn._readBuf(&aabbCount, 4); subtypeAABBs.reserve(aabbCount); for (uint32_t i = 0; i < aabbCount; ++i) { subtypeAABBs.emplace_back(); subtypeAABBs.back().first.read(conn); subtypeAABBs.back().second.read(conn); //printf("AABB %s %d (%f %f %f) (%f %f %f)\n", name.c_str(), i, // float(subtypeAABBs.back().first.val.simd[0]), float(subtypeAABBs.back().first.val.simd[1]), float(subtypeAABBs.back().first.val.simd[2]), // float(subtypeAABBs.back().second.val.simd[0]), float(subtypeAABBs.back().second.val.simd[1]), float(subtypeAABBs.back().second.val.simd[2])); } } Action::Channel::Channel(Connection& conn) { uint32_t bufSz; conn._readBuf(&bufSz, 4); boneName.assign(bufSz, ' '); conn._readBuf(&boneName[0], bufSz); conn._readBuf(&attrMask, 4); uint32_t keyCount; conn._readBuf(&keyCount, 4); keys.reserve(keyCount); for (uint32_t i = 0; i < keyCount; ++i) keys.emplace_back(conn, attrMask); } Action::Channel::Key::Key(Connection& conn, uint32_t attrMask) { if (attrMask & 1) rotation.read(conn); if (attrMask & 2) position.read(conn); if (attrMask & 4) scale.read(conn); } DataStream::DataStream(Connection* parent) : m_parent(parent) { m_parent->m_dataStreamActive = true; m_parent->_writeStr("DATABEGIN"); char readBuf[16]; m_parent->_readStr(readBuf, 16); if (strcmp(readBuf, "READY")) BlenderLog.report(logvisor::Fatal, fmt("unable to open DataStream with blender")); } void DataStream::close() { if (m_parent && m_parent->m_lock) { m_parent->_writeStr("DATAEND"); char readBuf[16]; m_parent->_readStr(readBuf, 16); if (strcmp(readBuf, "DONE")) BlenderLog.report(logvisor::Fatal, fmt("unable to close DataStream with blender")); m_parent->m_dataStreamActive = false; m_parent->m_lock = false; } } std::vector DataStream::getMeshList() { m_parent->_writeStr("MESHLIST"); uint32_t count; m_parent->_readBuf(&count, 4); std::vector retval; retval.reserve(count); for (uint32_t i = 0; i < count; ++i) { char name[128]; m_parent->_readStr(name, 128); retval.push_back(name); } return retval; } std::vector DataStream::getLightList() { m_parent->_writeStr("LIGHTLIST"); uint32_t count; m_parent->_readBuf(&count, 4); std::vector retval; retval.reserve(count); for (uint32_t i = 0; i < count; ++i) { char name[128]; m_parent->_readStr(name, 128); retval.push_back(name); } return retval; } std::pair DataStream::getMeshAABB() { if (m_parent->m_loadedType != BlendType::Mesh && m_parent->m_loadedType != BlendType::Actor) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not a MESH or ACTOR blend")), m_parent->m_loadedBlend.getAbsolutePath()); m_parent->_writeStr("MESHAABB"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable get AABB: {}"), readBuf); Vector3f minPt(*m_parent); Vector3f maxPt(*m_parent); return std::make_pair(minPt.val, maxPt.val); } const char* DataStream::MeshOutputModeString(HMDLTopology topology) { static const char* STRS[] = {"TRIANGLES", "TRISTRIPS"}; return STRS[int(topology)]; } Mesh DataStream::compileMesh(HMDLTopology topology, int skinSlotCount) { if (m_parent->getBlendType() != BlendType::Mesh) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not a MESH blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("MESHCOMPILE"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to cook mesh: {}"), readBuf); return Mesh(*m_parent, topology, skinSlotCount); } Mesh DataStream::compileMesh(std::string_view name, HMDLTopology topology, int skinSlotCount, bool useLuv) { if (m_parent->getBlendType() != BlendType::Area) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an AREA blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(fmt("MESHCOMPILENAME {} {}"), name, int(useLuv))); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to cook mesh '{}': {}"), name, readBuf); return Mesh(*m_parent, topology, skinSlotCount, useLuv); } ColMesh DataStream::compileColMesh(std::string_view name) { if (m_parent->getBlendType() != BlendType::Area) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an AREA blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(fmt("MESHCOMPILENAMECOLLISION {}"), name)); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to cook collision mesh '{}': {}"), name, readBuf); return ColMesh(*m_parent); } std::vector DataStream::compileColMeshes() { if (m_parent->getBlendType() != BlendType::ColMesh) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not a CMESH blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("MESHCOMPILECOLLISIONALL"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to cook collision meshes: {}"), readBuf); uint32_t meshCount; m_parent->_readBuf(&meshCount, 4); std::vector ret; ret.reserve(meshCount); for (uint32_t i = 0; i < meshCount; ++i) ret.emplace_back(*m_parent); return ret; } std::vector DataStream::compileLights() { if (m_parent->getBlendType() != BlendType::Area) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an AREA blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("LIGHTCOMPILEALL"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to gather all lights: {}"), readBuf); uint32_t lightCount; m_parent->_readBuf(&lightCount, 4); std::vector ret; ret.reserve(lightCount); for (uint32_t i = 0; i < lightCount; ++i) ret.emplace_back(*m_parent); return ret; } PathMesh DataStream::compilePathMesh() { if (m_parent->getBlendType() != BlendType::PathMesh) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not a PATH blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("MESHCOMPILEPATH"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to path collision mesh: {}"), readBuf); return PathMesh(*m_parent); } std::vector DataStream::compileGuiFrame(int version) { std::vector ret; if (m_parent->getBlendType() != BlendType::Frame) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not a FRAME blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(fmt("FRAMECOMPILE {}"), version)); char readBuf[1024]; m_parent->_readStr(readBuf, 1024); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to compile frame: {}"), readBuf); while (true) { m_parent->_readStr(readBuf, 1024); if (!strcmp(readBuf, "FRAMEDONE")) break; std::string readStr(readBuf); SystemStringConv absolute(readStr); auto& proj = m_parent->getBlendPath().getProject(); SystemString relative; if (PathRelative(absolute.c_str())) relative = absolute.sys_str(); else relative = proj.getProjectRootPath().getProjectRelativeFromAbsolute(absolute.sys_str()); hecl::ProjectPath path(proj.getProjectWorkingPath(), relative); m_parent->_writeStr(fmt::format(fmt("{:016X}"), path.hash().val64())); } uint32_t len; m_parent->_readBuf(&len, 4); ret.resize(len); m_parent->_readBuf(&ret[0], len); return ret; } std::vector DataStream::getTextures() { m_parent->_writeStr("GETTEXTURES"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to get textures: {}"), readBuf); uint32_t texCount; m_parent->_readBuf(&texCount, 4); std::vector texs; texs.reserve(texCount); for (uint32_t i = 0; i < texCount; ++i) { uint32_t bufSz; m_parent->_readBuf(&bufSz, 4); std::string readStr(bufSz, ' '); m_parent->_readBuf(&readStr[0], bufSz); SystemStringConv absolute(readStr); SystemString relative = m_parent->getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(absolute.sys_str()); texs.emplace_back(m_parent->getBlendPath().getProject().getProjectWorkingPath(), relative); } return texs; } Actor DataStream::compileActor() { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an ACTOR blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("ACTORCOMPILE"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to compile actor: {}"), readBuf); return Actor(*m_parent); } Actor DataStream::compileActorCharacterOnly() { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an ACTOR blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("ACTORCOMPILECHARACTERONLY"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to compile actor: {}"), readBuf); return Actor(*m_parent); } Action DataStream::compileActionChannelsOnly(std::string_view name) { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an ACTOR blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(fmt("ACTIONCOMPILECHANNELSONLY {}"), name)); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to compile action: {}"), readBuf); return Action(*m_parent); } World DataStream::compileWorld() { if (m_parent->getBlendType() != BlendType::World) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an WORLD blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("WORLDCOMPILE"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to compile world: {}"), readBuf); return World(*m_parent); } std::vector DataStream::getArmatureNames() { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an ACTOR blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("GETARMATURENAMES"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to get armatures of actor: {}"), readBuf); std::vector ret; uint32_t armCount; m_parent->_readBuf(&armCount, 4); ret.reserve(armCount); for (uint32_t i = 0; i < armCount; ++i) { ret.emplace_back(); std::string& name = ret.back(); uint32_t bufSz; m_parent->_readBuf(&bufSz, 4); name.assign(bufSz, ' '); m_parent->_readBuf(&name[0], bufSz); } return ret; } std::vector DataStream::getSubtypeNames() { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an ACTOR blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("GETSUBTYPENAMES"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to get subtypes of actor: {}"), readBuf); std::vector ret; uint32_t subCount; m_parent->_readBuf(&subCount, 4); ret.reserve(subCount); for (uint32_t i = 0; i < subCount; ++i) { ret.emplace_back(); std::string& name = ret.back(); uint32_t bufSz; m_parent->_readBuf(&bufSz, 4); name.assign(bufSz, ' '); m_parent->_readBuf(&name[0], bufSz); } return ret; } std::vector DataStream::getActionNames() { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an ACTOR blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("GETACTIONNAMES"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to get actions of actor: {}"), readBuf); std::vector ret; uint32_t actCount; m_parent->_readBuf(&actCount, 4); ret.reserve(actCount); for (uint32_t i = 0; i < actCount; ++i) { ret.emplace_back(); std::string& name = ret.back(); uint32_t bufSz; m_parent->_readBuf(&bufSz, 4); name.assign(bufSz, ' '); m_parent->_readBuf(&name[0], bufSz); } return ret; } std::vector DataStream::getSubtypeOverlayNames(std::string_view name) { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an ACTOR blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(fmt("GETSUBTYPEOVERLAYNAMES {}"), name)); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to get subtype overlays of actor: {}"), readBuf); std::vector ret; uint32_t subCount; m_parent->_readBuf(&subCount, 4); ret.reserve(subCount); for (uint32_t i = 0; i < subCount; ++i) { ret.emplace_back(); std::string& name = ret.back(); uint32_t bufSz; m_parent->_readBuf(&bufSz, 4); name.assign(bufSz, ' '); m_parent->_readBuf(&name[0], bufSz); } return ret; } std::vector DataStream::getAttachmentNames() { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an ACTOR blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("GETATTACHMENTNAMES"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to get attachments of actor: {}"), readBuf); std::vector ret; uint32_t attCount; m_parent->_readBuf(&attCount, 4); ret.reserve(attCount); for (uint32_t i = 0; i < attCount; ++i) { ret.emplace_back(); std::string& name = ret.back(); uint32_t bufSz; m_parent->_readBuf(&bufSz, 4); name.assign(bufSz, ' '); m_parent->_readBuf(&name[0], bufSz); } return ret; } std::unordered_map DataStream::getBoneMatrices(std::string_view name) { if (name.empty()) return {}; if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an ACTOR blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(fmt("GETBONEMATRICES {}"), name)); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to get matrices of armature: {}"), readBuf); std::unordered_map ret; uint32_t boneCount; m_parent->_readBuf(&boneCount, 4); ret.reserve(boneCount); for (uint32_t i = 0; i < boneCount; ++i) { std::string name; uint32_t bufSz; m_parent->_readBuf(&bufSz, 4); name.assign(bufSz, ' '); m_parent->_readBuf(&name[0], bufSz); Matrix3f matOut; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { float val; m_parent->_readBuf(&val, 4); matOut[i].simd[j] = val; } reinterpret_cast(matOut[i]).simd[3] = 0.f; } ret.emplace(std::make_pair(std::move(name), std::move(matOut))); } return ret; } bool DataStream::renderPvs(std::string_view path, const atVec3f& location) { if (path.empty()) return false; if (m_parent->getBlendType() != BlendType::Area) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an AREA blend")), m_parent->getBlendPath().getAbsolutePath()); athena::simd_floats f(location.simd); m_parent->_writeStr(fmt::format(fmt("RENDERPVS {} {} {} {}"), path, f[0], f[1], f[2])); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to render PVS for: {}; {}"), m_parent->getBlendPath().getAbsolutePathUTF8(), readBuf); return true; } bool DataStream::renderPvsLight(std::string_view path, std::string_view lightName) { if (path.empty()) return false; if (m_parent->getBlendType() != BlendType::Area) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not an AREA blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(fmt("RENDERPVSLIGHT {} {}"), path, lightName)); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to render PVS light {} for: {}; {}"), lightName, m_parent->getBlendPath().getAbsolutePathUTF8(), readBuf); return true; } MapArea DataStream::compileMapArea() { if (m_parent->getBlendType() != BlendType::MapArea) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not a MAPAREA blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("MAPAREACOMPILE"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to compile map area: {}; {}"), m_parent->getBlendPath().getAbsolutePathUTF8(), readBuf); return {*m_parent}; } MapUniverse DataStream::compileMapUniverse() { if (m_parent->getBlendType() != BlendType::MapUniverse) BlenderLog.report(logvisor::Fatal, fmt(_SYS_STR("{} is not a MAPUNIVERSE blend")), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("MAPUNIVERSECOMPILE"); char readBuf[256]; m_parent->_readStr(readBuf, 256); if (strcmp(readBuf, "OK")) BlenderLog.report(logvisor::Fatal, fmt("unable to compile map universe: {}; {}"), m_parent->getBlendPath().getAbsolutePathUTF8(), readBuf); return {*m_parent}; } void Connection::quitBlender() { char lineBuf[256]; if (m_lock) { if (m_pyStreamActive) { _writeStr("PYEND"); _readStr(lineBuf, sizeof(lineBuf)); m_pyStreamActive = false; } else if (m_dataStreamActive) { _writeStr("DATAEND"); _readStr(lineBuf, sizeof(lineBuf)); m_dataStreamActive = false; } m_lock = false; } _writeStr("QUIT"); _readStr(lineBuf, sizeof(lineBuf)); } Connection& Connection::SharedConnection() { return SharedBlenderToken.getBlenderConnection(); } void Connection::Shutdown() { SharedBlenderToken.shutdown(); } Connection& Token::getBlenderConnection() { if (!m_conn) m_conn = std::make_unique(hecl::VerbosityLevel); return *m_conn; } void Token::shutdown() { if (m_conn) { m_conn->quitBlender(); m_conn.reset(); if (hecl::VerbosityLevel >= 1) BlenderLog.report(logvisor::Info, fmt("Blender Shutdown Successful")); } } Token::~Token() { shutdown(); } HMDLBuffers::HMDLBuffers(HMDLMeta&& meta, size_t vboSz, const std::vector& iboData, std::vector&& surfaces, const Mesh::SkinBanks& skinBanks) : m_meta(std::move(meta)) , m_vboSz(vboSz) , m_vboData(new uint8_t[vboSz]) , m_iboSz(iboData.size() * 4) , m_iboData(new uint8_t[iboData.size() * 4]) , m_surfaces(std::move(surfaces)) , m_skinBanks(skinBanks) { if (m_iboSz) { athena::io::MemoryWriter w(m_iboData.get(), m_iboSz); w.enumerateLittle(iboData); } } } // namespace hecl::blender