#include "CMDLMaterials.hpp" #include "../DNAMP2/CMDLMaterials.hpp" #include "hecl/Blender/Connection.hpp" using Stream = hecl::blender::PyOutStream; namespace DataSpec::DNAMP1 { using Material = MaterialSet::Material; void MaterialSet::RegisterMaterialProps(Stream& out) { out << "bpy.types.Material.retro_depth_sort = bpy.props.BoolProperty(name='Retro: Transparent Depth Sort')\n" "bpy.types.Material.retro_alpha_test = bpy.props.BoolProperty(name='Retro: Punchthrough Alpha')\n" "bpy.types.Material.retro_samus_reflection = bpy.props.BoolProperty(name='Retro: Samus Reflection')\n" "bpy.types.Material.retro_depth_write = bpy.props.BoolProperty(name='Retro: Depth Write')\n" "bpy.types.Material.retro_samus_reflection_persp = bpy.props.BoolProperty(name='Retro: Samus Reflection " "Perspective')\n" "bpy.types.Material.retro_shadow_occluder = bpy.props.BoolProperty(name='Retro: Shadow Occluder')\n" "bpy.types.Material.retro_samus_reflection_indirect = bpy.props.BoolProperty(name='Retro: Samus Reflection " "Indirect Texture')\n" "bpy.types.Material.retro_lightmapped = bpy.props.BoolProperty(name='Retro: Lightmapped')\n" "\n"; } void Material::AddTexture(Stream& out, GX::TexGenSrc type, int mtxIdx, uint32_t texIdx) { char mtxLabel[64]; if (mtxIdx == -1) strncpy(mtxLabel, "IDENTITY", 64); else snprintf(mtxLabel, 64, "MTX_%u", mtxIdx); out.format( "# Texture\n" "tex_uv_node = new_nodetree.nodes.new('ShaderNodeGeometry')\n" "tex_uv_node.label = '%s'\n" "tex_node = new_nodetree.nodes.new('ShaderNodeTexture')\n" "tex_node.label = 'Texture %u'\n" "texture_nodes.append(tex_node)\n" "gridder.place_node(tex_uv_node, 1)\n" "gridder.place_node(tex_node, 1)\n" "tex_uv_node.location[0] -= 120\n" "tex_node.location[0] += 120\n" "tex_node.location[1] += 176\n", mtxLabel, texIdx); if (texIdx != 0xff) out.format("tex_node.texture = tex_maps[%u]\n", texIdx); if (type == GX::TG_POS) out.format("tex_links.append(new_nodetree.links.new(tex_uv_node.outputs['View'], tex_node.inputs['Vector']))\n"); else if (type == GX::TG_NRM) out.format("tex_links.append(new_nodetree.links.new(tex_uv_node.outputs['Normal'], tex_node.inputs['Vector']))\n"); else if (type >= GX::TG_TEX0 && type <= GX::TG_TEX7) { uint8_t texIdx = type - GX::TG_TEX0; out.format( "tex_links.append(new_nodetree.links.new(tex_uv_node.outputs['UV'], tex_node.inputs['Vector']))\n" "tex_uv_node.uv_layer = 'UV_%u'\n", texIdx); } out << "\n"; } void Material::AddTextureAnim(Stream& out, UVAnimation::Mode type, unsigned idx, const float* vals) { switch (type) { case UVAnimation::Mode::MvInvNoTranslation: out.format( "for link in list(tex_links):\n" " if link.from_node.label == 'MTX_%u':\n" " tex_links.remove(link)\n" " soc_from = link.from_socket\n" " soc_to = link.to_socket\n" " node = new_nodetree.nodes.new('ShaderNodeGroup')\n" " node.node_tree = bpy.data.node_groups['RetroUVMode0NodeN']\n" " node.location[0] = link.from_node.location[0] + 50\n" " node.location[1] = link.from_node.location[1] - 50\n" " new_nodetree.links.remove(link)\n" " new_nodetree.links.new(soc_from, node.inputs[0])\n" " new_nodetree.links.new(node.outputs[0], soc_to)\n\n", idx); break; case UVAnimation::Mode::MvInv: out.format( "for link in list(tex_links):\n" " if link.from_node.label == 'MTX_%u':\n" " tex_links.remove(link)\n" " soc_from = link.from_socket\n" " soc_to = link.to_socket\n" " node = new_nodetree.nodes.new('ShaderNodeGroup')\n" " node.node_tree = bpy.data.node_groups['RetroUVMode1NodeN']\n" " node.location[0] = link.from_node.location[0] + 50\n" " node.location[1] = link.from_node.location[1] - 50\n" " new_nodetree.links.remove(link)\n" " new_nodetree.links.new(soc_from, node.inputs[0])\n" " new_nodetree.links.new(node.outputs[0], soc_to)\n\n", idx); break; case UVAnimation::Mode::Scroll: out.format( "for link in list(tex_links):\n" " if link.from_node.label == 'MTX_%u':\n" " tex_links.remove(link)\n" " soc_from = link.from_socket\n" " soc_to = link.to_socket\n" " node = new_nodetree.nodes.new('ShaderNodeGroup')\n" " node.node_tree = bpy.data.node_groups['RetroUVMode2Node']\n" " node.location[0] = link.from_node.location[0] + 50\n" " node.location[1] = link.from_node.location[1] - 50\n" " node.inputs[1].default_value = (%f,%f,0)\n" " node.inputs[2].default_value = (%f,%f,0)\n" " new_nodetree.links.remove(link)\n" " new_nodetree.links.new(soc_from, node.inputs[0])\n" " new_nodetree.links.new(node.outputs[0], soc_to)\n\n", idx, vals[0], vals[1], vals[2], vals[3]); break; case UVAnimation::Mode::Rotation: out.format( "for link in list(tex_links):\n" " if link.from_node.label == 'MTX_%u':\n" " tex_links.remove(link)\n" " soc_from = link.from_socket\n" " soc_to = link.to_socket\n" " node = new_nodetree.nodes.new('ShaderNodeGroup')\n" " node.node_tree = bpy.data.node_groups['RetroUVMode3Node']\n" " node.location[0] = link.from_node.location[0] + 50\n" " node.location[1] = link.from_node.location[1] - 50\n" " node.inputs[1].default_value = %f\n" " node.inputs[2].default_value = %f\n" " new_nodetree.links.remove(link)\n" " new_nodetree.links.new(soc_from, node.inputs[0])\n" " new_nodetree.links.new(node.outputs[0], soc_to)\n\n", idx, vals[0], vals[1]); break; case UVAnimation::Mode::HStrip: out.format( "for link in list(tex_links):\n" " if link.from_node.label == 'MTX_%u':\n" " tex_links.remove(link)\n" " soc_from = link.from_socket\n" " soc_to = link.to_socket\n" " node = new_nodetree.nodes.new('ShaderNodeGroup')\n" " node.node_tree = bpy.data.node_groups['RetroUVMode4Node']\n" " node.location[0] = link.from_node.location[0] + 50\n" " node.location[1] = link.from_node.location[1] - 50\n" " node.inputs[1].default_value = %f\n" " node.inputs[2].default_value = %f\n" " node.inputs[3].default_value = %f\n" " node.inputs[4].default_value = %f\n" " new_nodetree.links.remove(link)\n" " new_nodetree.links.new(soc_from, node.inputs[0])\n" " new_nodetree.links.new(node.outputs[0], soc_to)\n\n", idx, vals[0], vals[1], vals[2], vals[3]); break; case UVAnimation::Mode::VStrip: out.format( "for link in list(tex_links):\n" " if link.from_node.label == 'MTX_%u':\n" " tex_links.remove(link)\n" " soc_from = link.from_socket\n" " soc_to = link.to_socket\n" " node = new_nodetree.nodes.new('ShaderNodeGroup')\n" " node.node_tree = bpy.data.node_groups['RetroUVMode5Node']\n" " node.location[0] = link.from_node.location[0] + 50\n" " node.location[1] = link.from_node.location[1] - 50\n" " node.inputs[1].default_value = %f\n" " node.inputs[2].default_value = %f\n" " node.inputs[3].default_value = %f\n" " node.inputs[4].default_value = %f\n" " new_nodetree.links.remove(link)\n" " new_nodetree.links.new(soc_from, node.inputs[0])\n" " new_nodetree.links.new(node.outputs[0], soc_to)\n\n", idx, vals[0], vals[1], vals[2], vals[3]); break; case UVAnimation::Mode::Model: out.format( "for link in list(tex_links):\n" " if link.from_node.label == 'MTX_%u':\n" " tex_links.remove(link)\n" " soc_from = link.from_socket\n" " soc_to = link.to_socket\n" " node = new_nodetree.nodes.new('ShaderNodeGroup')\n" " node.node_tree = bpy.data.node_groups['RetroUVMode6NodeN']\n" " node.location[0] = link.from_node.location[0] + 50\n" " node.location[1] = link.from_node.location[1] - 50\n" " new_nodetree.links.remove(link)\n" " new_nodetree.links.new(soc_from, node.inputs[0])\n" " new_nodetree.links.new(node.outputs[0], soc_to)\n\n", idx); break; case UVAnimation::Mode::CylinderEnvironment: out.format( "for link in list(tex_links):\n" " if link.from_node.label == 'MTX_%u':\n" " tex_links.remove(link)\n" " soc_from = link.from_socket\n" " soc_to = link.to_socket\n" " node = new_nodetree.nodes.new('ShaderNodeGroup')\n" " node.node_tree = bpy.data.node_groups['RetroUVMode7NodeN']\n" " node.location[0] = link.from_node.location[0] + 50\n" " node.location[1] = link.from_node.location[1] - 50\n" " node.inputs[1].default_value = %f\n" " node.inputs[2].default_value = %f\n" " new_nodetree.links.remove(link)\n" " new_nodetree.links.new(soc_from, node.inputs[0])\n" " new_nodetree.links.new(node.outputs[0], soc_to)\n\n", idx, vals[0], vals[1]); break; case UVAnimation::Mode::Eight: out.format( "for link in list(tex_links):\n" " if link.from_node.label == 'MTX_%u':\n" " tex_links.remove(link)\n" " soc_from = link.from_socket\n" " soc_to = link.to_socket\n" " node = new_nodetree.nodes.new('ShaderNodeGroup')\n" " node.node_tree = bpy.data.node_groups['RetroUVMode8Node']\n" " node.location[0] = link.from_node.location[0] + 50\n" " node.location[1] = link.from_node.location[1] - 50\n" " node.inputs[1].default_value = %f\n" " node.inputs[2].default_value = %f\n" " node.inputs[3].default_value = %f\n" " node.inputs[4].default_value = %f\n" " node.inputs[5].default_value = %f\n" " node.inputs[6].default_value = %f\n" " node.inputs[7].default_value = %f\n" " node.inputs[8].default_value = %f\n" " node.inputs[9].default_value = %f\n" " new_nodetree.links.remove(link)\n" " new_nodetree.links.new(soc_from, node.inputs[0])\n" " new_nodetree.links.new(node.outputs[0], soc_to)\n\n", idx, vals[0], vals[1], vals[2], vals[3], vals[4], vals[5], vals[6], vals[7], vals[8]); break; default: break; } } void Material::AddKcolor(Stream& out, const GX::Color& col, unsigned idx) { out.format( "# KColor\n" "kc_node = new_nodetree.nodes.new('ShaderNodeRGB')\n" "kc_node.label = 'KColor %u'\n" "kc_node.outputs['Color'].default_value[0] = %f\n" "kc_node.outputs['Color'].default_value[1] = %f\n" "kc_node.outputs['Color'].default_value[2] = %f\n" "kc_node.outputs['Color'].default_value[3] = %f\n" "gridder.place_node(kc_node, 1)\n" "\n" "ka_node = new_nodetree.nodes.new('ShaderNodeValue')\n" "ka_node.label = 'KAlpha %u'\n" "ka_node.outputs['Value'].default_value = %f\n" "gridder.place_node(ka_node, 1)\n" "\n" "kcolor_nodes.append((kc_node,ka_node))\n" "\n", idx, (float)col.color[0] / (float)0xff, (float)col.color[1] / (float)0xff, (float)col.color[2] / (float)0xff, (float)col.color[3] / (float)0xff, idx, (float)col.color[3] / (float)0xff); } void Material::AddDynamicColor(Stream& out, unsigned idx) { out.format( "# Dynamic Color\n" "node_name = 'DYNAMIC_C_%u'\n" "if node_name not in new_nodetree.nodes:\n" " dyn_c_node = new_nodetree.nodes.new('ShaderNodeRGB')\n" " dyn_c_node.name = node_name\n" " dyn_c_node.label = 'DYNAMIC_%u'\n" " dyn_c_node.outputs['Color'].default_value = (1.0,1.0,1.0,1.0)\n" " gridder.place_node(dyn_c_node, 1)\n" "\n", idx, idx); } void Material::AddDynamicAlpha(Stream& out, unsigned idx) { out.format( "# Dynamic Alpha\n" "node_name = 'DYNAMIC_A_%u'\n" "if node_name not in new_nodetree.nodes:\n" " dyn_a_node = new_nodetree.nodes.new('ShaderNodeValue')\n" " dyn_a_node.name = node_name\n" " dyn_a_node.label = 'DYNAMIC_%u'\n" " dyn_a_node.outputs['Value'].default_value = 1.0\n" " gridder.place_node(dyn_a_node, 1)\n" "\n", idx, idx); } enum class Combiner { Add, Sub, Mult }; static void AddColorCombiner(Stream& out, Combiner type, const char* a, const char* b, const char* v) { out << "combiner_node = new_nodetree.nodes.new('ShaderNodeMixRGB')\n" "combiner_node.inputs[0].default_value = 1.0\n" "gridder.place_node_right(combiner_node, 2, 0)\n"; if (type == Combiner::Add) out << "combiner_node.blend_type = 'ADD'\n"; else if (type == Combiner::Sub) out << "combiner_node.blend_type = 'SUBTRACT'\n"; else if (type == Combiner::Mult) out << "combiner_node.blend_type = 'MULTIPLY'\n"; if (a) { if (!strcmp(a, "ZERO")) out << "combiner_node.inputs['Color1'].default_value = (0.0, 0.0, 0.0, 0.0)\n"; else if (!strcmp(a, "HALF")) out << "combiner_node.inputs['Color1'].default_value = (0.5, 0.5, 0.5, 0.5)\n"; else if (!strcmp(a, "ONE")) out << "combiner_node.inputs['Color1'].default_value = (1.0, 1.0, 1.0, 1.0)\n"; else if (!strcmp(a, "D0")) { Material::AddDynamicColor(out, 0); out << "new_nodetree.links.new(new_nodetree.nodes['DYNAMIC_C_0'].outputs['Color'], " "combiner_node.inputs['Color1'])\n"; } else if (!strcmp(a, "D1")) { Material::AddDynamicColor(out, 1); out << "new_nodetree.links.new(new_nodetree.nodes['DYNAMIC_C_1'].outputs['Color'], " "combiner_node.inputs['Color1'])\n"; } else if (!strcmp(a, "D2")) { Material::AddDynamicColor(out, 2); out << "new_nodetree.links.new(new_nodetree.nodes['DYNAMIC_C_2'].outputs['Color'], " "combiner_node.inputs['Color1'])\n"; } else if (!strlen(a)) { } else out.format("new_nodetree.links.new(%s, combiner_node.inputs['Color1'])\n", a); } if (b) { if (!strcmp(b, "ZERO")) out << "combiner_node.inputs['Color2'].default_value = (0.0, 0.0, 0.0, 0.0)\n"; else if (!strcmp(b, "HALF")) out << "combiner_node.inputs['Color2'].default_value = (0.5, 0.5, 0.5, 0.5)\n"; else if (!strcmp(b, "ONE")) out << "combiner_node.inputs['Color2'].default_value = (1.0, 1.0, 1.0, 1.0)\n"; else if (!strcmp(b, "D0")) { Material::AddDynamicColor(out, 0); out << "new_nodetree.links.new(new_nodetree.nodes['DYNAMIC_C_0'].outputs['Color'], " "combiner_node.inputs['Color2'])\n"; } else if (!strcmp(b, "D1")) { Material::AddDynamicColor(out, 1); out << "new_nodetree.links.new(new_nodetree.nodes['DYNAMIC_C_1'].outputs['Color'], " "combiner_node.inputs['Color2'])\n"; } else if (!strcmp(b, "D2")) { Material::AddDynamicColor(out, 2); out << "new_nodetree.links.new(new_nodetree.nodes['DYNAMIC_C_2'].outputs['Color'], " "combiner_node.inputs['Color2'])\n"; } else if (!strlen(b)) { } else out.format("new_nodetree.links.new(%s, combiner_node.inputs['Color2'])\n", b); } if (v) out.format("new_nodetree.links.new(combiner_node.outputs['Color'], %s)\n", v); out << "color_combiner_sockets.append(combiner_node.outputs['Color'])\n\n"; } static void AddAlphaCombiner(Stream& out, Combiner type, const char* a, const char* b, const char* v) { out << "combiner_node = new_nodetree.nodes.new('ShaderNodeMath')\n" "gridder.place_node_right(combiner_node, 2, 1)\n"; if (type == Combiner::Add) out << "combiner_node.operation = 'ADD'\n"; else if (type == Combiner::Sub) out << "combiner_node.operation = 'SUBTRACT'\n"; else if (type == Combiner::Mult) out << "combiner_node.operation = 'MULTIPLY'\n"; if (a) { if (!strcmp(a, "ZERO")) out << "combiner_node.inputs[0].default_value = 0.0\n"; else if (!strcmp(a, "HALF")) out << "combiner_node.inputs[0].default_value = 0.5\n"; else if (!strcmp(a, "ONE")) out << "combiner_node.inputs[0].default_value = 1.0\n"; else if (!strcmp(a, "D0")) { Material::AddDynamicAlpha(out, 0); out << "new_nodetree.links.new(new_nodetree.nodes['DYNAMIC_A_0'].outputs[0], combiner_node.inputs[0])\n"; } else if (!strcmp(a, "D1")) { Material::AddDynamicAlpha(out, 1); out << "new_nodetree.links.new(new_nodetree.nodes['DYNAMIC_A_1'].outputs[0], combiner_node.inputs[0])\n"; } else if (!strcmp(a, "D2")) { Material::AddDynamicAlpha(out, 2); out << "new_nodetree.links.new(new_nodetree.nodes['DYNAMIC_A_2'].outputs[0], combiner_node.inputs[0])\n"; } else out.format("new_nodetree.links.new(%s, combiner_node.inputs[0])\n", a); } if (b) { if (!strcmp(b, "ZERO")) out << "combiner_node.inputs[1].default_value = 0.0\n"; else if (!strcmp(b, "HALF")) out << "combiner_node.inputs[1].default_value = 0.5\n"; else if (!strcmp(b, "ONE")) out << "combiner_node.inputs[1].default_value = 1.0\n"; else if (!strcmp(b, "D0")) { Material::AddDynamicAlpha(out, 0); out << "new_nodetree.links.new(new_nodetree.nodes['DYNAMIC_A_0'].outputs[0], combiner_node.inputs[1])\n"; } else if (!strcmp(b, "D1")) { Material::AddDynamicAlpha(out, 1); out << "new_nodetree.links.new(new_nodetree.nodes['DYNAMIC_A_1'].outputs[0], combiner_node.inputs[1])\n"; } else if (!strcmp(b, "D2")) { Material::AddDynamicAlpha(out, 2); out << "new_nodetree.links.new(new_nodetree.nodes['DYNAMIC_A_2'].outputs[0], combiner_node.inputs[1])\n"; } else out.format("new_nodetree.links.new(%s, combiner_node.inputs[1])\n", b); } if (v) out.format("new_nodetree.links.new(combiner_node.outputs[0], %s)\n", v); out << "alpha_combiner_sockets.append(combiner_node.outputs[0])\n\n"; } static void TranslateColorSocket(char* socketOut, GX::TevColorArg arg, GX::TevKColorSel kcolor, const MaterialSet::Material::TEVStageTexInfo& stageTex, char c_regs[4][64], char a_regs[4][64]) { if (arg == GX::CC_ZERO) strcpy(socketOut, "ZERO"); else if (arg == GX::CC_HALF) strcpy(socketOut, "HALF"); else if (arg == GX::CC_ONE) strcpy(socketOut, "ONE"); else if (arg == GX::CC_TEXC) { if (stageTex.tcgSlot == 0xff) strcpy(socketOut, "ONE"); else sprintf(socketOut, "texture_nodes[%u].outputs['Color']", stageTex.tcgSlot); } else if (arg == GX::CC_TEXA) { if (stageTex.tcgSlot == 0xff) strcpy(socketOut, "ONE"); else sprintf(socketOut, "texture_nodes[%u].outputs['Value']", stageTex.tcgSlot); } else if (arg == GX::CC_RASC) strcpy(socketOut, "material_node.outputs['Color']"); else if (arg == GX::CC_RASA) strcpy(socketOut, "material_node.outputs['Alpha']"); else if (arg == GX::CC_KONST) { int kreg = (kcolor - GX::TEV_KCSEL_K0) % 4; if (kcolor < GX::TEV_KCSEL_K0) strcpy(socketOut, "ONE"); else if (kreg == 0) strcpy(socketOut, "kcolor_nodes[0][0].outputs[0]"); else if (kreg == 1) strcpy(socketOut, "kcolor_nodes[1][0].outputs[0]"); else if (kreg == 2) strcpy(socketOut, "kcolor_nodes[2][0].outputs[0]"); else if (kreg == 3) strcpy(socketOut, "kcolor_nodes[3][0].outputs[0]"); else strcpy(socketOut, "ONE"); } else if (arg == GX::CC_CPREV) strcpy(socketOut, c_regs[GX::TEVPREV]); else if (arg == GX::CC_APREV) strcpy(socketOut, a_regs[GX::TEVPREV]); else if (arg == GX::CC_C0) strcpy(socketOut, c_regs[GX::TEVREG0]); else if (arg == GX::CC_A0) strcpy(socketOut, a_regs[GX::TEVREG0]); else if (arg == GX::CC_C1) strcpy(socketOut, c_regs[GX::TEVREG1]); else if (arg == GX::CC_A1) strcpy(socketOut, a_regs[GX::TEVREG1]); else if (arg == GX::CC_C2) strcpy(socketOut, c_regs[GX::TEVREG2]); else if (arg == GX::CC_A2) strcpy(socketOut, a_regs[GX::TEVREG2]); } static void TranslateAlphaSocket(char* socketOut, GX::TevAlphaArg arg, GX::TevKAlphaSel kalpha, const MaterialSet::Material::TEVStageTexInfo& stageTex, char a_regs[4][64]) { if (arg == GX::CA_ZERO) strcpy(socketOut, "ZERO"); else if (arg == GX::CA_TEXA) { if (stageTex.tcgSlot == 0xff) strcpy(socketOut, "ONE"); else sprintf(socketOut, "texture_nodes[%u].outputs['Value']", stageTex.tcgSlot); } else if (arg == GX::CA_RASA) strcpy(socketOut, "material_node.outputs['Alpha']"); else if (arg == GX::CA_KONST) { int kreg = kalpha - GX::TEV_KASEL_K0_A; if (kreg == 0) strcpy(socketOut, "kcolor_nodes[0][1].outputs[0]"); else if (kreg == 1) strcpy(socketOut, "kcolor_nodes[1][1].outputs[0]"); else if (kreg == 2) strcpy(socketOut, "kcolor_nodes[2][1].outputs[0]"); else if (kreg == 3) strcpy(socketOut, "kcolor_nodes[3][1].outputs[0]"); else strcpy(socketOut, "ONE"); } else if (arg == GX::CA_APREV) strcpy(socketOut, a_regs[GX::TEVPREV]); else if (arg == GX::CA_A0) strcpy(socketOut, a_regs[GX::TEVREG0]); else if (arg == GX::CA_A1) strcpy(socketOut, a_regs[GX::TEVREG1]); else if (arg == GX::CA_A2) strcpy(socketOut, a_regs[GX::TEVREG2]); } static void AddTEVStage(Stream& out, const MaterialSet::Material::TEVStage& stage, const MaterialSet::Material::TEVStageTexInfo& stageTex, char c_regs[4][64], char a_regs[4][64], unsigned& c_combiner_idx, unsigned& a_combiner_idx) { char ca[64]; char cb[64]; char cc[64]; char cd[64]; TranslateColorSocket(ca, stage.colorInA(), stage.kColorIn(), stageTex, c_regs, a_regs); TranslateColorSocket(cb, stage.colorInB(), stage.kColorIn(), stageTex, c_regs, a_regs); TranslateColorSocket(cc, stage.colorInC(), stage.kColorIn(), stageTex, c_regs, a_regs); TranslateColorSocket(cd, stage.colorInD(), stage.kColorIn(), stageTex, c_regs, a_regs); char aa[64]; char ab[64]; char ac[64]; char ad[64]; TranslateAlphaSocket(aa, stage.alphaInA(), stage.kAlphaIn(), stageTex, a_regs); TranslateAlphaSocket(ab, stage.alphaInB(), stage.kAlphaIn(), stageTex, a_regs); TranslateAlphaSocket(ac, stage.alphaInC(), stage.kAlphaIn(), stageTex, a_regs); TranslateAlphaSocket(ad, stage.alphaInD(), stage.kAlphaIn(), stageTex, a_regs); /* Apply color optimizations */ unsigned c_tev_opts = 0; if (stage.colorInA() == GX::CC_ZERO || stage.colorInC() == GX::CC_ONE) c_tev_opts |= 1; if (stage.colorInB() == GX::CC_ZERO || stage.colorInC() == GX::CC_ZERO) c_tev_opts |= 2; if (c_tev_opts & 1 || c_tev_opts & 2) c_tev_opts |= 4; if (stage.colorInD() == GX::CC_ZERO || (c_tev_opts & 7) == 7) c_tev_opts |= 8; /* Special A/D (additive) optimization */ if (stage.colorInA() != GX::CC_ZERO && stage.colorInB() == GX::CC_ZERO && stage.colorInC() == GX::CC_ZERO && stage.colorInD() != GX::CC_ZERO) { c_tev_opts |= 0x1f; AddColorCombiner(out, Combiner::Add, cd, ca, nullptr); ++c_combiner_idx; } else if (stage.colorInA() != GX::CC_ZERO && stage.colorInB() == GX::CC_ZERO && stage.colorInC() == GX::CC_ZERO && stage.colorInD() == GX::CC_ZERO) { c_tev_opts |= 0xf; } else if (stage.colorInA() == GX::CC_ZERO && stage.colorInB() == GX::CC_ZERO && stage.colorInC() == GX::CC_ZERO && stage.colorInD() != GX::CC_ZERO) { c_tev_opts |= 0xf; } if (!(c_tev_opts & 1)) { /* A nodes */ AddColorCombiner(out, Combiner::Sub, "ONE", ca, nullptr); ++c_combiner_idx; if (strcmp(cc, "ONE")) { AddColorCombiner(out, Combiner::Mult, cc, "color_combiner_sockets[-1]", nullptr); ++c_combiner_idx; } } const char* c_soc_log[2] = {"color_combiner_sockets[-1]", "color_combiner_sockets[-2]"}; if (!(c_tev_opts & 2)) { /* B nodes */ if (!strcmp(cc, "ONE")) { if (strcmp(cb, "ZERO") && strcmp(cb, "HALF") && strcmp(cb, "ONE") && strcmp(cb, "D0") && strcmp(cb, "D1") && strcmp(cb, "D2")) { out.format("color_combiner_sockets.append(%s)\n", cb); ++c_combiner_idx; } else { c_soc_log[1] = c_soc_log[0]; c_soc_log[0] = cb; } } else { AddColorCombiner(out, Combiner::Mult, cc, cb, nullptr); ++c_combiner_idx; } } if (!(c_tev_opts & 4)) { /* A+B node */ AddColorCombiner(out, Combiner::Add, c_soc_log[0], c_soc_log[1], nullptr); ++c_combiner_idx; } if (!(c_tev_opts & 8)) { /* +D node */ AddColorCombiner(out, Combiner::Add, cd, c_soc_log[0], nullptr); ++c_combiner_idx; } /* Apply alpha optimizations */ unsigned a_tev_opts = 0; if (stage.alphaInA() == GX::CA_ZERO) a_tev_opts |= 1; if (stage.alphaInB() == GX::CA_ZERO || stage.alphaInC() == GX::CA_ZERO) a_tev_opts |= 2; if (a_tev_opts & 1 || a_tev_opts & 2) a_tev_opts |= 4; if (stage.alphaInD() == GX::CA_ZERO || (a_tev_opts & 7) == 7) a_tev_opts |= 8; /* Special A/D (additive) optimization */ if (stage.alphaInA() != GX::CA_ZERO && stage.alphaInB() == GX::CA_ZERO && stage.alphaInC() == GX::CA_ZERO && stage.alphaInD() != GX::CA_ZERO) { a_tev_opts |= 0x1f; AddAlphaCombiner(out, Combiner::Add, ad, aa, nullptr); ++a_combiner_idx; } else if (stage.alphaInA() != GX::CA_ZERO && stage.alphaInB() == GX::CA_ZERO && stage.alphaInC() == GX::CA_ZERO && stage.alphaInD() == GX::CA_ZERO) { a_tev_opts |= 0xf; } else if (stage.alphaInA() == GX::CA_ZERO && stage.alphaInB() == GX::CA_ZERO && stage.alphaInC() == GX::CA_ZERO && stage.alphaInD() != GX::CA_ZERO) { a_tev_opts |= 0xf; } if (!(a_tev_opts & 1)) { /* A nodes */ AddAlphaCombiner(out, Combiner::Sub, "ONE", aa, nullptr); ++a_combiner_idx; if (strcmp(ac, "ONE")) { AddAlphaCombiner(out, Combiner::Mult, ac, "alpha_combiner_sockets[-1]", nullptr); ++a_combiner_idx; } } const char* a_soc_log[2] = {"alpha_combiner_sockets[-1]", "alpha_combiner_sockets[-2]"}; if (!(a_tev_opts & 2)) { /* B nodes */ if (!strcmp(ac, "ONE")) { if (strcmp(ab, "ZERO") && strcmp(ab, "HALF") && strcmp(ab, "ONE") && strcmp(ab, "D0") && strcmp(ab, "D1") && strcmp(ab, "D2")) { out.format("alpha_combiner_sockets.append(%s)\n", ab); ++a_combiner_idx; } else { a_soc_log[1] = a_soc_log[0]; a_soc_log[0] = ab; } } else { AddAlphaCombiner(out, Combiner::Mult, ac, ab, nullptr); ++a_combiner_idx; } } if (!(a_tev_opts & 4)) { /* A+B node */ AddAlphaCombiner(out, Combiner::Add, a_soc_log[0], a_soc_log[1], nullptr); ++a_combiner_idx; } if (!(a_tev_opts & 8)) { /* +D node */ AddAlphaCombiner(out, Combiner::Add, ad, a_soc_log[0], nullptr); ++a_combiner_idx; } /* Update TEV regs */ if (c_tev_opts == 0xf) { if (stage.colorInD() != GX::CC_ZERO) strncpy(c_regs[stage.colorOpOutReg()], cd, 64); else if (stage.colorInA() != GX::CC_ZERO) strncpy(c_regs[stage.colorOpOutReg()], ca, 64); } else snprintf(c_regs[stage.colorOpOutReg()], 64, "color_combiner_sockets[%u]", c_combiner_idx - 1); if (a_tev_opts == 0xf) { if (stage.alphaInD() != GX::CA_ZERO) strncpy(a_regs[stage.alphaOpOutReg()], ad, 64); else if (stage.alphaInA() != GX::CA_ZERO) strncpy(a_regs[stage.alphaOpOutReg()], aa, 64); } else snprintf(a_regs[stage.alphaOpOutReg()], 64, "alpha_combiner_sockets[%u]", a_combiner_idx - 1); /* Row Break in gridder */ out << "gridder.row_break(2)\n"; } template void _ConstructMaterial(Stream& out, const MAT& material, unsigned groupIdx, unsigned matIdx) { unsigned i; out.format( "new_material = bpy.data.materials.new('MAT_%u_%u')\n" "new_material.use_shadows = True\n" "new_material.use_transparent_shadows = True\n" "new_material.diffuse_color = (1.0,1.0,1.0)\n" "new_material.diffuse_intensity = 1.0\n" "new_material.specular_intensity = 0.0\n" "new_material.use_nodes = True\n" "new_nodetree = new_material.node_tree\n" "material_node = new_nodetree.nodes['Material']\n" "final_node = new_nodetree.nodes['Output']\n" "\n" "gridder = hecl.Nodegrid(new_nodetree)\n" "gridder.place_node(final_node, 3)\n" "gridder.place_node(material_node, 0)\n" "material_node.material = new_material\n" "\n" "texture_nodes = []\n" "kcolor_nodes = []\n" "color_combiner_sockets = []\n" "alpha_combiner_sockets = []\n" "tex_links = []\n" "tev_reg_sockets = [None]*4\n" "\n", groupIdx, matIdx); /* Material Flags */ out.format( "new_material.retro_depth_sort = %s\n" "new_material.retro_alpha_test = %s\n" "new_material.retro_samus_reflection = %s\n" "new_material.retro_depth_write = %s\n" "new_material.retro_samus_reflection_persp = %s\n" "new_material.retro_shadow_occluder = %s\n" "new_material.retro_samus_reflection_indirect = %s\n" "new_material.retro_lightmapped = %s\n" "new_material.game_settings.invisible = %s\n", material.flags.depthSorting() ? "True" : "False", material.flags.alphaTest() ? "True" : "False", material.flags.samusReflection() ? "True" : "False", material.flags.depthWrite() ? "True" : "False", material.flags.samusReflectionSurfaceEye() ? "True" : "False", material.flags.shadowOccluderMesh() ? "True" : "False", material.flags.samusReflectionIndirectTexture() ? "True" : "False", material.flags.lightmap() ? "True" : "False", material.flags.shadowOccluderMesh() ? "True" : "False"); /* Texture Indices */ out << "tex_maps = []\n"; for (atUint32 idx : material.textureIdxs) out.format("tex_maps.append(texmap_list[%u])\n", idx); /* KColor entries */ if (material.flags.konstValuesEnabled()) { unsigned i = 0; for (const GX::Color& col : material.konstColors) Material::AddKcolor(out, col, i++); } /* Blend factors */ using BlendFactor = Material::BlendFactor; if (material.blendDstFac != BlendFactor::BL_ZERO) { if (material.blendDstFac == BlendFactor::BL_ONE) out << "new_material.game_settings.alpha_blend = 'ADD'\n" "new_material.use_transparency = True\n" "new_material.transparency_method = 'RAYTRACE'\n" "new_material.alpha = 1.0\n"; else out << "new_material.game_settings.alpha_blend = 'ALPHA'\n" "new_material.use_transparency = True\n" "new_material.transparency_method = 'RAYTRACE'\n" "new_material.alpha = 1.0\n"; } /* Color channels (for combining dynamic lighting) */ for (const Material::ColorChannel& chan : material.colorChannels) { if (!chan.lighting()) out << "new_material.use_shadeless = True\n"; } /* Add texture maps/tcgs */ unsigned addedTcgs = 0; for (i = 0; i < material.tevStageCount; ++i) { if (material.tevStageTexInfo[i].tcgSlot != 0xff && !(addedTcgs >> material.tevStageTexInfo[i].tcgSlot & 1)) { const Material::TexCoordGen& tcg = material.tcgs[material.tevStageTexInfo[i].tcgSlot]; GX::TexMtx mtx = tcg.mtx(); int mtxIdx = -1; if (mtx >= GX::TEXMTX0 && mtx <= GX::TEXMTX9) mtxIdx = (mtx - GX::TEXMTX0) / 3; Material::AddTexture(out, tcg.source(), mtxIdx, material.tevStageTexInfo[i].texSlot); addedTcgs |= 1 << material.tevStageTexInfo[i].tcgSlot; } } /* Indirect texture node */ if (material.flags.samusReflectionIndirectTexture()) { Material::AddTexture(out, GX::TexGenSrc::TG_POS, -1, material.indTexSlot[0]); out << "# Indirect Texture\n" "ind_out = new_nodetree.nodes.new('ShaderNodeOutput')\n" "gridder.place_node(ind_out, 3)\n" "ind_out.name = 'IndirectOutput'\n" "ind_out.label = 'Indirect'\n" "new_nodetree.links.new(tex_node.outputs['Color'], ind_out.inputs['Color'])\n"; } /* TEV-emulation combiner-node index context */ unsigned c_combiner_idx = 0; unsigned a_combiner_idx = 0; /* Initialze TEV register sockets */ char c_regs[4][64] = {"ONE", "D0", "D1", "D2"}; char a_regs[4][64] = {"ONE", "D0", "D1", "D2"}; /* Has Lightmap? */ if (material.flags.lightmap()) { if (material.tevStageTexInfo[0].texSlot != 0xff) out << "new_material.hecl_lightmap = tex_maps[0].name\n" "tex_maps[0].image.use_fake_user = True\n"; } /* Add TEV stages */ for (i = 0; i < material.tevStageCount; ++i) { const Material::TEVStage& stage = material.tevStages[i]; const Material::TEVStageTexInfo& stage_tex = material.tevStageTexInfo[i]; AddTEVStage(out, stage, stage_tex, c_regs, a_regs, c_combiner_idx, a_combiner_idx); } /* Connect final prev register */ if (!strcmp(c_regs[GX::TEVPREV], "ONE")) out << "final_node.inputs['Color'].default_value = (1.0,1.0,1.0,1.0)\n"; else out.format("new_nodetree.links.new(%s, final_node.inputs['Color'])\n", c_regs[GX::TEVPREV]); if (!strcmp(a_regs[GX::TEVPREV], "ONE")) out << "final_node.inputs['Alpha'].default_value = 1.0\n"; else out.format("new_nodetree.links.new(%s, final_node.inputs['Alpha'])\n", a_regs[GX::TEVPREV]); /* Texmtx Animation Section */ i = 0; for (const Material::UVAnimation& anim : material.uvAnims) Material::AddTextureAnim(out, anim.mode, i++, anim.vals); } void MaterialSet::ConstructMaterial(Stream& out, const MaterialSet::Material& material, unsigned groupIdx, unsigned matIdx) { _ConstructMaterial(out, material, groupIdx, matIdx); } MaterialSet::Material::Material(const hecl::Backend::GX& gx, const std::unordered_map& iprops, const std::vector& texPathsIn, std::vector& texPathsOut, int colorCount, bool lightmapUVs, bool matrixSkinning) { XXH32_state_t xxHash; XXH32_reset(&xxHash, 0); if (gx.m_kcolorCount) { flags.setKonstValuesEnabled(true); konstCount.push_back(gx.m_kcolorCount); } auto search = iprops.find("retro_depth_sort"); if (search != iprops.end()) flags.setDepthSorting(search->second != 0); search = iprops.find("retro_alpha_test"); if (search != iprops.end()) flags.setPunchthroughAlpha(search->second != 0); search = iprops.find("retro_samus_reflection"); if (search != iprops.end()) flags.setSamusReflection(search->second != 0); search = iprops.find("retro_depth_write"); if (search != iprops.end()) flags.setDepthWrite(search->second != 0); search = iprops.find("retro_samus_reflection_persp"); if (search != iprops.end()) flags.setSamusReflectionSurfaceEye(search->second != 0); search = iprops.find("retro_shadow_occluder"); if (search != iprops.end()) flags.setShadowOccluderMesh(search->second != 0); search = iprops.find("retro_samus_reflection_indirect"); if (search != iprops.end()) flags.setSamusReflectionIndirectTexture(search->second != 0); search = iprops.find("retro_lightmapped"); if (search != iprops.end()) flags.setLightmap(search->second != 0); flags.setLightmapUVArray(lightmapUVs); atUint16 texFlags = 0; atUint16 tcgFlags = 0; tevStageTexInfo.reserve(gx.m_tevCount); textureIdxs.reserve(gx.m_tevCount); for (unsigned i = 0; i < gx.m_tevCount; ++i) { const hecl::Backend::GX::TEVStage& stage = gx.m_tevs[i]; tevStageTexInfo.emplace_back(); TEVStageTexInfo& texInfo = tevStageTexInfo.back(); if (stage.m_texGenIdx != -1) { texInfo.tcgSlot = stage.m_texGenIdx; const hecl::Backend::GX::TexCoordGen& tcg = gx.m_tcgs[stage.m_texGenIdx]; if (tcg.m_src >= hecl::Backend::GX::TG_TEX0 && tcg.m_src <= hecl::Backend::GX::TG_TEX6) tcgFlags |= 1 << (tcg.m_src - hecl::Backend::GX::TG_TEX0); } if (stage.m_texMapIdx != -1) { texInfo.texSlot = textureIdxs.size(); const hecl::ProjectPath& texPath = texPathsIn.at(stage.m_texMapIdx); texFlags |= 1 << i; ++textureCount; bool found = false; for (size_t t = 0; t < texPathsOut.size(); ++t) { if (texPath == texPathsOut[t]) { found = true; textureIdxs.push_back(t); break; } } if (!found) { textureIdxs.push_back(texPathsOut.size()); texPathsOut.push_back(texPath); } } } flags.setTextureSlots(texFlags); XXH32_update(&xxHash, &flags.flags, sizeof(flags.flags)); vaFlags.setPosition(GX::INDEX16); vaFlags.setNormal(GX::INDEX16); if (0 < colorCount) vaFlags.setColor0(GX::INDEX16); if (1 < colorCount) vaFlags.setColor1(GX::INDEX16); if (tcgFlags & (1 << 0)) vaFlags.setTex0(GX::INDEX16); if (tcgFlags & (1 << 1)) vaFlags.setTex1(GX::INDEX16); if (tcgFlags & (1 << 2)) vaFlags.setTex2(GX::INDEX16); if (tcgFlags & (1 << 3)) vaFlags.setTex3(GX::INDEX16); if (tcgFlags & (1 << 4)) vaFlags.setTex4(GX::INDEX16); if (tcgFlags & (1 << 5)) vaFlags.setTex5(GX::INDEX16); if (tcgFlags & (1 << 6)) vaFlags.setTex6(GX::INDEX16); if (matrixSkinning) { vaFlags.setPnMatIdx(GX::DIRECT); if (tcgFlags & (1 << 0)) vaFlags.setTex0MatIdx(GX::DIRECT); if (tcgFlags & (1 << 1)) vaFlags.setTex1MatIdx(GX::DIRECT); if (tcgFlags & (1 << 2)) vaFlags.setTex2MatIdx(GX::DIRECT); if (tcgFlags & (1 << 3)) vaFlags.setTex3MatIdx(GX::DIRECT); if (tcgFlags & (1 << 4)) vaFlags.setTex4MatIdx(GX::DIRECT); if (tcgFlags & (1 << 5)) vaFlags.setTex5MatIdx(GX::DIRECT); if (tcgFlags & (1 << 6)) vaFlags.setTex6MatIdx(GX::DIRECT); } XXH32_update(&xxHash, &vaFlags.vaFlags, sizeof(vaFlags.vaFlags)); XXH32_update(&xxHash, &gx.m_kcolorCount, sizeof(gx.m_kcolorCount)); for (unsigned i = 0; i < gx.m_kcolorCount; ++i) { konstColors.emplace_back(gx.m_kcolors[i]); XXH32_update(&xxHash, &gx.m_kcolors[i].num, sizeof(gx.m_kcolors[i].num)); } blendDstFac = BlendFactor(gx.m_blendDst); XXH32_update(&xxHash, &gx.m_blendDst, sizeof(gx.m_blendDst)); blendSrcFac = BlendFactor(gx.m_blendSrc); XXH32_update(&xxHash, &gx.m_blendSrc, sizeof(gx.m_blendSrc)); if (flags.samusReflectionIndirectTexture()) { indTexSlot.push_back(textureIdxs.size()); XXH32_update(&xxHash, &indTexSlot.back(), sizeof(indTexSlot.back())); } colorChannelCount = 1; XXH32_update(&xxHash, &colorChannelCount, sizeof(colorChannelCount)); colorChannels.emplace_back(); ColorChannel& ch = colorChannels.back(); for (unsigned i = 0; i < gx.m_tevCount; ++i) { const hecl::Backend::GX::TEVStage& stage = gx.m_tevs[i]; for (int c = 0; c < 4; ++c) if (stage.m_color[c] == hecl::Backend::GX::CC_RASC || stage.m_color[c] == hecl::Backend::GX::CC_RASA || stage.m_alpha[c] == hecl::Backend::GX::CA_RASA) { ch.setLighting(true); uint8_t one = 1; XXH32_update(&xxHash, &one, sizeof(one)); break; } if (ch.lighting()) break; } ch.setDiffuseFn(GX::DF_CLAMP); ch.setAttenuationFn(GX::AF_SPOT); tevStageCount = gx.m_tevCount; XXH32_update(&xxHash, &tevStageCount, sizeof(tevStageCount)); tevStages.reserve(gx.m_tevCount); for (unsigned i = 0; i < gx.m_tevCount; ++i) { const hecl::Backend::GX::TEVStage& stage = gx.m_tevs[i]; tevStages.emplace_back(); TEVStage& target = tevStages.back(); target.setColorInA(stage.m_color[0]); target.setColorInB(stage.m_color[1]); target.setColorInC(stage.m_color[2]); target.setColorInD(stage.m_color[3]); target.setAlphaInA(stage.m_alpha[0]); target.setAlphaInB(stage.m_alpha[1]); target.setAlphaInC(stage.m_alpha[2]); target.setAlphaInD(stage.m_alpha[3]); target.setColorOp(stage.m_cop); target.setColorOpBias(GX::TB_ZERO); target.setColorOpScale(GX::CS_SCALE_1); target.setColorOpClamp(true); target.setColorOpOutReg(stage.m_cRegOut); target.setAlphaOp(stage.m_aop); target.setAlphaOpBias(GX::TB_ZERO); target.setAlphaOpScale(GX::CS_SCALE_1); target.setAlphaOpClamp(true); target.setAlphaOpOutReg(stage.m_aRegOut); target.setKColorIn(stage.m_kColor); target.setKAlphaIn(stage.m_kAlpha); target.setRASIn(GX::GX_COLOR_NULL); for (int c = 0; c < 4; ++c) if (stage.m_color[c] == hecl::Backend::GX::CC_RASC || stage.m_color[c] == hecl::Backend::GX::CC_RASA || stage.m_alpha[c] == hecl::Backend::GX::CA_RASA) { target.setRASIn(GX::GX_COLOR0A0); break; } XXH32_update(&xxHash, &target.ciFlags, sizeof(target.ciFlags)); XXH32_update(&xxHash, &target.aiFlags, sizeof(target.aiFlags)); XXH32_update(&xxHash, &target.ccFlags, sizeof(target.ccFlags)); XXH32_update(&xxHash, &target.acFlags, sizeof(target.acFlags)); XXH32_update(&xxHash, &target.kaInput, sizeof(target.kaInput)); XXH32_update(&xxHash, &target.kcInput, sizeof(target.kcInput)); XXH32_update(&xxHash, &target.rascInput, sizeof(target.rascInput)); } tcgCount = gx.m_tcgCount; XXH32_update(&xxHash, &tcgCount, sizeof(tcgCount)); for (unsigned i = 0; i < gx.m_tcgCount; ++i) { const hecl::Backend::GX::TexCoordGen& tcg = gx.m_tcgs[i]; tcgs.emplace_back(); TexCoordGen& target = tcgs.back(); target.setType(GX::TG_MTX3x4); target.setSource(tcg.m_src); target.setMtx(tcg.m_mtx); target.setNormalize(tcg.m_norm); target.setPostMtx(tcg.m_pmtx); XXH32_update(&xxHash, &target.flags, sizeof(target.flags)); } uvAnimsSize = 4; uvAnimsCount = 0; for (; uvAnimsCount < 8;) { bool found = false; for (unsigned t = 0; t < gx.m_tcgCount; ++t) { const hecl::Backend::GX::TexCoordGen& tcg = gx.m_tcgs[t]; if (tcg.m_mtx == GX::IDENTITY) continue; if ((tcg.m_mtx - GX::TEXMTX0) / 3 == uvAnimsCount) { found = true; ++uvAnimsCount; uvAnims.emplace_back(tcg.m_gameFunction, tcg.m_gameArgs); XXH32_update(&xxHash, tcg.m_gameFunction.data(), sizeof(tcg.m_gameFunction.size())); for (const atVec4f& arg : tcg.m_gameArgs) XXH32_update(&xxHash, &arg, sizeof(arg)); size_t tmpUvAnimsSize = uvAnimsSize; uvAnims.back().binarySize(tmpUvAnimsSize); uvAnimsSize = tmpUvAnimsSize; break; } } if (!found) break; } XXH32_update(&xxHash, &uvAnimsSize, sizeof(uvAnimsSize)); XXH32_update(&xxHash, &uvAnimsCount, sizeof(uvAnimsCount)); uniqueIdx = XXH32_digest(&xxHash); } HMDLMaterialSet::Material::Material(hecl::Frontend::Frontend& FE, const std::string& diagName, const hecl::blender::Material& mat, const std::unordered_map& iprops, const std::vector& texPaths) { auto search = iprops.find("retro_depth_sort"); if (search != iprops.end()) flags.setDepthSorting(search->second != 0); search = iprops.find("retro_alpha_test"); if (search != iprops.end()) flags.setPunchthroughAlpha(search->second != 0); search = iprops.find("retro_samus_reflection"); if (search != iprops.end()) flags.setSamusReflection(search->second != 0); search = iprops.find("retro_depth_write"); if (search != iprops.end()) flags.setDepthWrite(search->second != 0); search = iprops.find("retro_samus_reflection_persp"); if (search != iprops.end()) flags.setSamusReflectionSurfaceEye(search->second != 0); search = iprops.find("retro_shadow_occluder"); if (search != iprops.end()) flags.setShadowOccluderMesh(search->second != 0); search = iprops.find("retro_samus_reflection_indirect"); if (search != iprops.end()) flags.setSamusReflectionIndirectTexture(search->second != 0); search = iprops.find("retro_lightmapped"); if (search != iprops.end()) flags.setLightmap(search->second != 0); for (const hecl::ProjectPath& path : mat.texs) { size_t idx = 0; for (const hecl::ProjectPath& tPath : texPaths) { if (path == tPath) { textureIdxs.push_back(idx); ++textureCount; break; } ++idx; } } if (flags.samusReflectionIndirectTexture()) indTexSlot.push_back(textureIdxs.size()); heclSource = mat.source; heclIr = FE.compileSource(mat.source, diagName); uvAnimsSize = 4; uvAnimsCount = 0; for (const hecl::Frontend::IR::Instruction& inst : heclIr.m_instructions) { if (inst.m_op != hecl::Frontend::IR::OpType::Call) continue; if (inst.m_call.m_name.compare("Texture")) continue; const hecl::Frontend::IR::Instruction& sourceInst = inst.getChildInst(heclIr, 1); if (sourceInst.m_op != hecl::Frontend::IR::OpType::Call) continue; if (sourceInst.m_call.m_name.compare(0, 11, "RetroUVMode")) continue; std::vector gameArgs; gameArgs.reserve(sourceInst.getChildCount() - 1); for (int i = 1; i < sourceInst.getChildCount(); ++i) { const hecl::Frontend::IR::Instruction& ci = sourceInst.getChildInst(heclIr, i); gameArgs.push_back(ci.getImmVec()); } ++uvAnimsCount; uvAnims.emplace_back(sourceInst.m_call.m_name, gameArgs); size_t tmpUvAnimsSize = uvAnimsSize; uvAnims.back().binarySize(tmpUvAnimsSize); uvAnimsSize = tmpUvAnimsSize; } } MaterialSet::Material::UVAnimation::UVAnimation(const std::string& gameFunction, const std::vector& gameArgs) { if (!gameFunction.compare("RetroUVMode0NodeN")) mode = Mode::MvInvNoTranslation; else if (!gameFunction.compare("RetroUVMode1NodeN")) mode = Mode::MvInv; else if (!gameFunction.compare("RetroUVMode2Node")) { mode = Mode::Scroll; if (gameArgs.size() < 2) Log.report(logvisor::Fatal, "Mode2 UV anim requires 2 vector arguments"); vals[0] = gameArgs[0].simd[0]; vals[1] = gameArgs[0].simd[1]; vals[2] = gameArgs[1].simd[0]; vals[3] = gameArgs[1].simd[1]; } else if (!gameFunction.compare("RetroUVMode3Node")) { mode = Mode::Rotation; if (gameArgs.size() < 2) Log.report(logvisor::Fatal, "Mode3 UV anim requires 2 arguments"); vals[0] = gameArgs[0].simd[0]; vals[1] = gameArgs[1].simd[0]; } else if (!gameFunction.compare("RetroUVMode4Node")) { mode = Mode::HStrip; if (gameArgs.size() < 4) Log.report(logvisor::Fatal, "Mode4 UV anim requires 4 arguments"); vals[0] = gameArgs[0].simd[0]; vals[1] = gameArgs[1].simd[0]; vals[2] = gameArgs[2].simd[0]; vals[3] = gameArgs[3].simd[0]; } else if (!gameFunction.compare("RetroUVMode5Node")) { mode = Mode::VStrip; if (gameArgs.size() < 4) Log.report(logvisor::Fatal, "Mode5 UV anim requires 4 arguments"); vals[0] = gameArgs[0].simd[0]; vals[1] = gameArgs[1].simd[0]; vals[2] = gameArgs[2].simd[0]; vals[3] = gameArgs[3].simd[0]; } else if (!gameFunction.compare("RetroUVMode6NodeN")) mode = Mode::Model; else if (!gameFunction.compare("RetroUVMode7NodeN")) { mode = Mode::CylinderEnvironment; if (gameArgs.size() < 2) Log.report(logvisor::Fatal, "Mode7 UV anim requires 2 arguments"); vals[0] = gameArgs[0].simd[0]; vals[1] = gameArgs[1].simd[0]; } else Log.report(logvisor::Fatal, "unsupported UV anim '%s'", gameFunction.c_str()); } template void MaterialSet::Material::UVAnimation::Enumerate(typename Op::StreamT& s) { Do({}, mode, s); switch (mode) { case Mode::MvInvNoTranslation: case Mode::MvInv: case Mode::Model: break; case Mode::Scroll: case Mode::HStrip: case Mode::VStrip: for (int i = 0; i < 4; ++i) Do({}, vals[i], s); break; case Mode::Rotation: case Mode::CylinderEnvironment: for (int i = 0; i < 2; ++i) Do({}, vals[i], s); break; case Mode::Eight: for (int i = 0; i < 9; ++i) Do({}, vals[i], s); break; } } AT_SPECIALIZE_DNA(MaterialSet::Material::UVAnimation) } // namespace DataSpec::DNAMP1 namespace DataSpec::DNAMP2 { void MaterialSet::ConstructMaterial(Stream& out, const MaterialSet::Material& material, unsigned groupIdx, unsigned matIdx) { DataSpec::DNAMP1::_ConstructMaterial(out, material, groupIdx, matIdx); } } // namespace DataSpec::DNAMP2