#include "ANIM.hpp" #include "zeus/CVector3f.hpp" #include "hecl/Blender/Connection.hpp" namespace DataSpec::DNAMP1 { using ANIMOutStream = hecl::blender::ANIMOutStream; void ANIM::IANIM::sendANIMToBlender(hecl::blender::PyOutStream& os, const DNAANIM::RigInverter& rig) const { os.format(fmt( "act.hecl_fps = round({})\n" "act.hecl_looping = {}\n"), (1.0f / mainInterval), looping ? "True" : "False"); auto kit = chanKeys.begin(); std::vector fixedRotKeys; std::vector fixedTransKeys; for (const std::pair& bone : bones) { const std::string* bName = rig.getCINF().getBoneNameFromId(bone.first); if (!bName) { ++kit; if (bone.second) ++kit; continue; } os.format(fmt("bone_string = '{}'\n"), *bName); os << "action_group = act.groups.new(bone_string)\n" "\n" "rotCurves = []\n" "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=0, " "action_group=bone_string))\n" "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=1, " "action_group=bone_string))\n" "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=2, " "action_group=bone_string))\n" "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=3, " "action_group=bone_string))\n" "\n"; if (bone.second) os << "transCurves = []\n" "transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=0, " "action_group=bone_string))\n" "transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=1, " "action_group=bone_string))\n" "transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=2, " "action_group=bone_string))\n" "\n"; ANIMOutStream ao = os.beginANIMCurve(); { const std::vector& rotKeys = *kit++; fixedRotKeys.clear(); fixedRotKeys.resize(rotKeys.size()); for (int c = 0; c < 4; ++c) { size_t idx = 0; for (const DNAANIM::Value& val : rotKeys) fixedRotKeys[idx++][c] = val.simd[c]; } for (zeus::CQuaternion& rot : fixedRotKeys) rot = rig.invertRotation(bone.first, rot); for (int c = 0; c < 4; ++c) { auto frameit = frames.begin(); ao.changeCurve(ANIMOutStream::CurveType::Rotate, c, rotKeys.size()); for (const zeus::CQuaternion& val : fixedRotKeys) ao.write(*frameit++, val[c]); } } if (bone.second) { const std::vector& transKeys = *kit++; fixedTransKeys.clear(); fixedTransKeys.resize(transKeys.size()); for (int c = 0; c < 3; ++c) { size_t idx = 0; for (const DNAANIM::Value& val : transKeys) fixedTransKeys[idx++][c] = val.simd[c]; } for (zeus::CVector3f& t : fixedTransKeys) t = rig.invertPosition(bone.first, t, true); for (int c = 0; c < 3; ++c) { auto frameit = frames.begin(); ao.changeCurve(ANIMOutStream::CurveType::Translate, c, fixedTransKeys.size()); for (const zeus::CVector3f& val : fixedTransKeys) ao.write(*frameit++, val[c]); } } } } UniqueID32 ANIM::GetEVNTId(athena::io::IStreamReader& reader) { atUint32 version = reader.readUint32Big(); switch (version) { case 0: { ANIM0 anim0; anim0.read(reader); return anim0.evnt; } case 2: case 3: reader.seek(4); return reader.readUint32Big(); default: Log.report(logvisor::Error, fmt("unrecognized ANIM version")); break; } return {}; } template <> void ANIM::Enumerate(typename Read::StreamT& reader) { atUint32 version = reader.readUint32Big(); switch (version) { case 0: m_anim.reset(new struct ANIM0); m_anim->read(reader); break; case 2: m_anim.reset(new struct ANIM2(false)); m_anim->read(reader); break; case 3: m_anim.reset(new struct ANIM2(true)); m_anim->read(reader); break; default: Log.report(logvisor::Error, fmt("unrecognized ANIM version")); break; } } template <> void ANIM::Enumerate(typename Write::StreamT& writer) { writer.writeUint32Big(m_anim->m_version); m_anim->write(writer); } template <> void ANIM::Enumerate(typename BinarySize::StreamT& s) { s += 4; m_anim->binarySize(s); } const char* ANIM::ANIM0::DNAType() { return "ANIM0"; } template <> void ANIM::ANIM0::Enumerate(athena::io::IStreamReader& reader) { Header head; head.read(reader); mainInterval = head.interval; frames.clear(); frames.reserve(head.keyCount); for (size_t k = 0; k < head.keyCount; ++k) frames.push_back(k); std::map boneMap; for (size_t b = 0; b < head.boneSlotCount; ++b) { atUint8 idx = reader.readUByte(); if (idx == 0xff) continue; boneMap[idx] = b; } atUint32 boneCount = reader.readUint32Big(); bones.clear(); bones.reserve(boneCount); channels.clear(); for (size_t b = 0; b < boneCount; ++b) { bones.emplace_back(boneMap[b], false); atUint8 idx = reader.readUByte(); channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Rotation; if (idx != 0xff) { bones.back().second = true; channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Translation; } } reader.readUint32Big(); chanKeys.clear(); chanKeys.reserve(channels.size()); for (const std::pair& bone : bones) { chanKeys.emplace_back(); std::vector& keys = chanKeys.back(); for (size_t k = 0; k < head.keyCount; ++k) keys.emplace_back(reader.readVec4fBig()); if (bone.second) chanKeys.emplace_back(); } reader.readUint32Big(); auto kit = chanKeys.begin(); for (const std::pair& bone : bones) { ++kit; if (bone.second) { std::vector& keys = *kit++; for (size_t k = 0; k < head.keyCount; ++k) keys.emplace_back(reader.readVec3fBig()); } } evnt.read(reader); } template <> void ANIM::ANIM0::Enumerate(athena::io::IStreamWriter& writer) { Header head; head.unk0 = 0; head.unk1 = 0; head.unk2 = 0; head.keyCount = frames.size(); head.duration = head.keyCount * mainInterval; head.interval = mainInterval; atUint32 maxId = 0; for (const std::pair& bone : bones) maxId = std::max(maxId, bone.first); head.boneSlotCount = maxId + 1; head.write(writer); for (size_t s = 0; s < head.boneSlotCount; ++s) { size_t boneIdx = 0; bool found = false; for (const std::pair& bone : bones) { if (s == bone.first) { writer.writeUByte(boneIdx); found = true; break; } ++boneIdx; } if (!found) writer.writeUByte(0xff); } writer.writeUint32Big(bones.size()); size_t boneIdx = 0; for (const std::pair& bone : bones) { if (bone.second) writer.writeUByte(boneIdx); else writer.writeUByte(0xff); ++boneIdx; } writer.writeUint32Big(bones.size() * head.keyCount); auto cit = chanKeys.begin(); atUint32 transKeyCount = 0; for (const std::pair& bone : bones) { const std::vector& keys = *cit++; auto kit = keys.begin(); for (size_t k = 0; k < head.keyCount; ++k) writer.writeVec4fBig(atVec4f{(*kit++).simd}); if (bone.second) { transKeyCount += head.keyCount; ++cit; } } writer.writeUint32Big(transKeyCount); cit = chanKeys.begin(); for (const std::pair& bone : bones) { ++cit; if (bone.second) { const std::vector& keys = *cit++; auto kit = keys.begin(); for (size_t k = 0; k < head.keyCount; ++k) writer.writeVec3fBig(atVec3f{(*kit++).simd}); } } evnt.write(writer); } template <> void ANIM::ANIM0::Enumerate(size_t& __isz) { Header head; atUint32 maxId = 0; for (const std::pair& bone : bones) maxId = std::max(maxId, bone.first); head.binarySize(__isz); __isz += maxId + 1; __isz += bones.size() + 4; __isz += 8; for (const std::pair& bone : bones) { __isz += head.keyCount * 16; if (bone.second) __isz += head.keyCount * 12; } __isz += 4; } const char* ANIM::ANIM2::DNAType() { return "ANIM2"; } template <> void ANIM::ANIM2::Enumerate(athena::io::IStreamReader& reader) { Header head; head.read(reader); evnt = head.evnt; mainInterval = head.interval; looping = bool(head.looping); WordBitmap keyBmp; keyBmp.read(reader, head.keyBitmapBitCount); frames.clear(); atUint32 frameAccum = 0; for (bool bit : keyBmp) { if (bit) frames.push_back(frameAccum); ++frameAccum; } reader.seek(8); bones.clear(); bones.reserve(head.boneChannelCount); channels.clear(); channels.reserve(head.boneChannelCount); atUint32 keyframeCount = 0; if (m_version == 3) { for (size_t b = 0; b < head.boneChannelCount; ++b) { ChannelDescPC desc; desc.read(reader); bones.emplace_back(desc.id, desc.keyCount2 != 0); if (desc.keyCount1) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Rotation; chan.id = desc.id; chan.i[0] = atInt32(desc.QinitRX) >> 8; chan.q[0] = desc.QinitRX & 0xff; chan.i[1] = atInt32(desc.QinitRY) >> 8; chan.q[1] = desc.QinitRY & 0xff; chan.i[2] = atInt32(desc.QinitRZ) >> 8; chan.q[2] = desc.QinitRZ & 0xff; } keyframeCount = std::max(keyframeCount, desc.keyCount1); if (desc.keyCount2) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Translation; chan.id = desc.id; chan.i[0] = atInt32(desc.QinitTX) >> 8; chan.q[0] = desc.QinitTX & 0xff; chan.i[1] = atInt32(desc.QinitTY) >> 8; chan.q[1] = desc.QinitTY & 0xff; chan.i[2] = atInt32(desc.QinitTZ) >> 8; chan.q[2] = desc.QinitTZ & 0xff; } } } else { for (size_t b = 0; b < head.boneChannelCount; ++b) { ChannelDesc desc; desc.read(reader); bones.emplace_back(desc.id, desc.keyCount2 != 0); if (desc.keyCount1) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Rotation; chan.id = desc.id; chan.i[0] = desc.initRX; chan.q[0] = desc.qRX; chan.i[1] = desc.initRY; chan.q[1] = desc.qRY; chan.i[2] = desc.initRZ; chan.q[2] = desc.qRZ; } keyframeCount = std::max(keyframeCount, atUint32(desc.keyCount1)); if (desc.keyCount2) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Translation; chan.id = desc.id; chan.i[0] = desc.initTX; chan.q[0] = desc.qTX; chan.i[1] = desc.initTY; chan.q[1] = desc.qTY; chan.i[2] = desc.initTZ; chan.q[2] = desc.qTZ; } } } size_t bsSize = DNAANIM::ComputeBitstreamSize(keyframeCount, channels); std::unique_ptr bsData = reader.readUBytes(bsSize); DNAANIM::BitstreamReader bsReader; chanKeys = bsReader.read(bsData.get(), keyframeCount, channels, head.rotDiv, head.translationMult, 0.f); } template <> void ANIM::ANIM2::Enumerate(athena::io::IStreamWriter& writer) { Header head; head.evnt = evnt; head.unk0 = 1; head.interval = mainInterval; head.rootBoneId = 3; head.looping = looping; head.unk3 = 1; WordBitmap keyBmp; size_t frameCount = 0; for (atUint32 frame : frames) { if (!keyBmp.getBit(frame)) { keyBmp.setBit(frame); frameCount += 1; } } head.keyBitmapBitCount = keyBmp.getBitCount(); head.duration = frames.back() * mainInterval; head.boneChannelCount = bones.size(); size_t keyframeCount = frameCount - 1; std::vector qChannels = channels; DNAANIM::BitstreamWriter bsWriter; size_t bsSize; float scaleMult; std::unique_ptr bsData = bsWriter.write(chanKeys, keyframeCount, qChannels, m_version == 3 ? 0x7fffff : 0x7fff, head.rotDiv, head.translationMult, scaleMult, bsSize); /* Tally up buffer size */ size_t scratchSize = 0; head.binarySize(scratchSize); keyBmp.binarySize(scratchSize); scratchSize += bsSize; if (m_version == 3) { for (const std::pair& bone : bones) { ChannelDescPC desc; desc.keyCount1 = keyframeCount; if (bone.second) desc.keyCount2 = keyframeCount; desc.binarySize(scratchSize); } } else { for (const std::pair& bone : bones) { ChannelDesc desc; desc.keyCount1 = keyframeCount; if (bone.second) desc.keyCount2 = keyframeCount; desc.binarySize(scratchSize); } } head.scratchSize = scratchSize; head.write(writer); keyBmp.write(writer); writer.writeUint32Big(head.boneChannelCount); writer.writeUint32Big(head.boneChannelCount); auto cit = qChannels.begin(); if (m_version == 3) { for (const std::pair& bone : bones) { ChannelDescPC desc; desc.id = bone.first; DNAANIM::Channel& chan = *cit++; desc.keyCount1 = keyframeCount; desc.QinitRX = (chan.i[0] << 8) | chan.q[0]; desc.QinitRY = (chan.i[1] << 8) | chan.q[1]; desc.QinitRZ = (chan.i[2] << 8) | chan.q[2]; if (bone.second) { DNAANIM::Channel& chan = *cit++; desc.keyCount2 = keyframeCount; desc.QinitTX = (chan.i[0] << 8) | chan.q[0]; desc.QinitTY = (chan.i[1] << 8) | chan.q[1]; desc.QinitTZ = (chan.i[2] << 8) | chan.q[2]; } desc.write(writer); } } else { for (const std::pair& bone : bones) { ChannelDesc desc; desc.id = bone.first; DNAANIM::Channel& chan = *cit++; desc.keyCount1 = keyframeCount; desc.initRX = chan.i[0]; desc.qRX = chan.q[0]; desc.initRY = chan.i[1]; desc.qRY = chan.q[1]; desc.initRZ = chan.i[2]; desc.qRZ = chan.q[2]; if (bone.second) { DNAANIM::Channel& chan = *cit++; desc.keyCount2 = keyframeCount; desc.initTX = chan.i[0]; desc.qTX = chan.q[0]; desc.initTY = chan.i[1]; desc.qTY = chan.q[1]; desc.initTZ = chan.i[2]; desc.qTZ = chan.q[2]; } desc.write(writer); } } writer.writeUBytes(bsData.get(), bsSize); } template <> void ANIM::ANIM2::Enumerate(size_t& __isz) { Header head; WordBitmap keyBmp; for (atUint32 frame : frames) keyBmp.setBit(frame); head.binarySize(__isz); keyBmp.binarySize(__isz); __isz += 8; if (m_version == 3) { for (const std::pair& bone : bones) { __isz += 24; if (bone.second) __isz += 12; } } else { for (const std::pair& bone : bones) { __isz += 17; if (bone.second) __isz += 9; } } __isz += DNAANIM::ComputeBitstreamSize(frames.size(), channels); } ANIM::ANIM(const BlenderAction& act, const std::unordered_map& idMap, const DNAANIM::RigInverter& rig, bool pc) { m_anim.reset(new struct ANIM2(pc)); IANIM& newAnim = *m_anim; newAnim.looping = act.looping; newAnim.bones.reserve(act.channels.size()); size_t extChanCount = 0; std::unordered_set addedBones; addedBones.reserve(act.channels.size()); for (const BlenderAction::Channel& chan : act.channels) { auto search = idMap.find(chan.boneName); if (search == idMap.cend()) { Log.report(logvisor::Warning, fmt("unable to find id for bone '{}'"), chan.boneName); continue; } if (addedBones.find(search->second) != addedBones.cend()) continue; addedBones.insert(search->second); extChanCount += std::max(zeus::PopCount(chan.attrMask), 2); newAnim.bones.emplace_back(search->second, (chan.attrMask & 0x2) != 0); } newAnim.frames.reserve(act.frames.size()); for (int32_t frame : act.frames) newAnim.frames.push_back(frame); newAnim.channels.reserve(extChanCount); newAnim.chanKeys.reserve(extChanCount); for (const BlenderAction::Channel& chan : act.channels) { auto search = idMap.find(chan.boneName); if (search == idMap.cend()) continue; newAnim.channels.emplace_back(); DNAANIM::Channel& newChan = newAnim.channels.back(); newChan.type = DNAANIM::Channel::Type::Rotation; newChan.id = search->second; newAnim.chanKeys.emplace_back(); std::vector& rotVals = newAnim.chanKeys.back(); rotVals.reserve(chan.keys.size()); float sign = 0.f; for (const BlenderAction::Channel::Key& key : chan.keys) { zeus::CQuaternion q(key.rotation.val); q = rig.restoreRotation(newChan.id, q); if (sign == 0.f) sign = q.w() < 0.f ? -1.f : 1.f; q *= sign; q.normalize(); rotVals.emplace_back(q.mSimd); } if (chan.attrMask & 0x2) { newAnim.channels.emplace_back(); DNAANIM::Channel& newChan = newAnim.channels.back(); newChan.type = DNAANIM::Channel::Type::Translation; newChan.id = search->second; newAnim.chanKeys.emplace_back(); std::vector& transVals = newAnim.chanKeys.back(); transVals.reserve(chan.keys.size()); for (const BlenderAction::Channel::Key& key : chan.keys) { zeus::CVector3f pos(key.position.val); pos = rig.restorePosition(newChan.id, pos, true); transVals.emplace_back(pos.mSimd); } } } /* Retro's original data uses microsecond precision */ newAnim.mainInterval = std::trunc(act.interval * 1000000.0) / 1000000.0; } } // namespace DataSpec::DNAMP1