#include "CFluidPlaneShader.hpp" namespace urde { static boo::ObjToken s_vtxFmt; static const char* VS = "#include \n" "using namespace metal;\n" "struct VertData\n" "{\n" " float4 posIn [[ attribute(0) ]];\n" " float4 normalIn [[ attribute(1) ]];\n" " float4 binormalIn [[ attribute(2) ]];\n" " float4 tangentIn [[ attribute(3) ]];\n" " float4 colorIn [[ attribute(4) ]];\n" "};\n" "\n" "UBINDING0 uniform FluidPlaneUniform\n" "{\n" " float4x4 mv;\n" " float4x4 mvNorm;\n" " float4x4 proj;\n" " float4x4 texMtxs[6];\n" "};\n" "\n" "struct VertToFrag\n" "{\n" " float4 pos : [[ position ]];\n" " float4 mvPos;\n" " float4 mvNorm;\n" " float4 mvBinorm;\n" " float4 mvTangent;\n" " float4 color;\n" " float2 uvs[7];\n" "};\n" "\n" "vertex VertToFrag vmain(VertData v [[ stage_in ]],\n" " constant FluidPlaneUniform& fu [[ buffer(2) ]])\n" "{\n" " VertToFrag vtf;\n" " vtf.mvPos = fu.mv * float4(v.posIn.xyz, 1.0);\n" " vtf.pos = fu.proj * vtf.mvPos;\n" " vtf.mvNorm = fu.mvNorm * v.normalIn;\n" " vtf.mvBinorm = fu.mvNorm * v.binormalIn;\n" " vtf.mvTangent = fu.mvNorm * v.tangentIn;\n" " vtf.color = v.colorIn;\n" " vtf.uvs[0] = (fu.texMtxs[0] * v.posIn).xy;\n" " vtf.uvs[1] = (fu.texMtxs[1] * v.posIn).xy;\n" " vtf.uvs[2] = (fu.texMtxs[2] * v.posIn).xy;\n" "%s" // Additional TCGs here " return vtf;\n" "}\n"; static const char* FS = "#include \n" "using namespace metal;\n" "constexpr sampler samp(address::repeat, filter::linear);\n" "\n" "struct Light\n" "{\n" " float4 pos;\n" " float4 dir;\n" " float4 color;\n" " float4 linAtt;\n" " float4 angAtt;\n" "};\n" "struct Fog\n" // Reappropriated for indirect texture scaling "{\n" " float4 color;\n" " float indScale;\n" " float start;\n" "};\n" "\n" "struct LightingUniform\n" "{\n" " Light lights[" _XSTR(URDE_MAX_LIGHTS) "];\n" " float4 ambient;\n" " float4 kColor0;\n" " float4 kColor1;\n" " float4 kColor2;\n" " float4 kColor3;\n" " Fog fog;\n" "};\n" "\n" "static float4 LightingFunc(float4 mvPosIn, float4 mvNormIn)\n" "{\n" " float4 ret = ambient;\n" " \n" " for (int i=0 ; i<" _XSTR(URDE_MAX_LIGHTS) " ; ++i)\n" " {\n" " float3 delta = mvPosIn.xyz - lights[i].pos.xyz;\n" " float dist = length(delta);\n" " float angDot = clamp(dot(normalize(delta), lights[i].dir.xyz), 0.0, 1.0);\n" " float att = 1.0 / (lights[i].linAtt[2] * dist * dist +\n" " lights[i].linAtt[1] * dist +\n" " lights[i].linAtt[0]);\n" " float angAtt = lights[i].angAtt[2] * angDot * angDot +\n" " lights[i].angAtt[1] * angDot +\n" " lights[i].angAtt[0];\n" " ret += lights[i].color * clamp(angAtt, 0.0, 1.0) * att * clamp(dot(normalize(-delta), mvNormIn.xyz), 0.0, 1.0);\n" " }\n" " \n" " return clamp(ret, float4(0.0,0.0,0.0,0.0), float4(1.0,1.0,1.0,1.0));\n" "}\n" "\n" "struct VertToFrag\n" "{\n" " float4 pos : [[ position ]];\n" " float4 mvPos;\n" " float4 mvNorm;\n" " float4 mvBinorm;\n" " float4 mvTangent;\n" " float4 color;\n" " float2 uvs[7];\n" "};\n" "\n" "fragment float4 fmain(VertToFrag vtf [[ stage_in ]],\n" " constant LightingUniform& lu [[ buffer(4) ]]%s)\n" // Textures here "{\n" " float4 lighting = LightingFunc(vtf.mvPos, normalize(vtf.mvNorm));\n" " float4 colorOut;\n" "%s" // Combiner expression here " return colorOut;\n" "}\n"; static const char* FSDoor = "#include \n" "using namespace metal;\n" "constexpr sampler samp(address::repeat, filter::linear);\n" "\n" "struct VertToFrag\n" "{\n" " float4 pos : [[ position ]];\n" " float4 mvPos;\n" " float4 mvNorm;\n" " float4 mvBinorm;\n" " float4 mvTangent;\n" " float4 color;\n" " float2 uvs[7];\n" "};\n" "\n" "fragment float4 fmain(VertToFrag vtf [[ stage_in ]]%s)\n" // Textures here "{\n" " float4 colorOut;\n" "%s" // Combiner expression here " return colorOut;\n" "}\n"; boo::ObjToken CFluidPlaneShader::BuildShader(boo::MetalDataFactory::Context& ctx, const SFluidPlaneShaderInfo& info) { if (!s_vtxFmt) { boo::VertexElementDescriptor elements[] = { {nullptr, nullptr, boo::VertexSemantic::Position4}, {nullptr, nullptr, boo::VertexSemantic::Normal4, 0}, {nullptr, nullptr, boo::VertexSemantic::Normal4, 1}, {nullptr, nullptr, boo::VertexSemantic::Normal4, 2}, {nullptr, nullptr, boo::VertexSemantic::Color} }; s_vtxFmt = ctx.newVertexFormat(5, elements); } std::string additionalTCGs; std::string textures; std::string combiner; int nextTex = 0; int nextTCG = 3; int nextMtx = 4; int bumpMapUv, envBumpMapUv, envMapUv, lightmapUv; if (info.m_hasPatternTex1) textures += hecl::Format(",\ntexture2d patternTex1 [[ texture(%d) ]]", nextTex++); if (info.m_hasPatternTex2) textures += hecl::Format(",\ntexture2d patternTex2 [[ texture(%d) ]]", nextTex++); if (info.m_hasColorTex) textures += hecl::Format(",\ntexture2d colorTex [[ texture(%d) ]]", nextTex++); if (info.m_hasBumpMap) textures += hecl::Format(",\ntexture2d bumpMap [[ texture(%d) ]]", nextTex++); if (info.m_hasEnvMap) textures += hecl::Format(",\ntexture2d envMap [[ texture(%d) ]]", nextTex++); if (info.m_hasEnvBumpMap) textures += hecl::Format(",\ntexture2d envBumpMap [[ texture(%d) ]]", nextTex++); if (info.m_hasLightmap) textures += hecl::Format(",\ntexture2d lightMap [[ texture(%d) ]]", nextTex++); if (info.m_hasBumpMap) { bumpMapUv = nextTCG; additionalTCGs += hecl::Format(" vtf.uvs[%d] = (fu.texMtxs[0] * v.posIn).xy;\n", nextTCG++); } if (info.m_hasEnvBumpMap) { envBumpMapUv = nextTCG; additionalTCGs += hecl::Format(" vtf.uvs[%d] = (fu.texMtxs[3] * v.posIn).xy;\n", nextTCG++); } if (info.m_hasEnvMap) { envMapUv = nextTCG; additionalTCGs += hecl::Format(" vtf.uvs[%d] = (fu.texMtxs[%d] * v.posIn).xy;\n", nextTCG++, nextMtx++); } if (info.m_hasLightmap) { lightmapUv = nextTCG; additionalTCGs += hecl::Format(" vtf.uvs[%d] = (fu.texMtxs[%d] * v.posIn).xy;\n", nextTCG++, nextMtx++); } switch (info.m_type) { case CFluidPlane::EFluidType::NormalWater: case CFluidPlane::EFluidType::PhazonFluid: case CFluidPlane::EFluidType::Four: if (info.m_hasLightmap) { combiner += hecl::Format(" float4 lightMapTexel = lightMap.sample(samp, vtf.uvs[%d]);\n", lightmapUv); // 0: Tex4TCG, Tex4, doubleLightmapBlend ? NULL : GX_COLOR1A1 // ZERO, TEX, KONST, doubleLightmapBlend ? ZERO : RAS // Output reg 2 // KColor 2 if (info.m_doubleLightmapBlend) { // 1: Tex4TCG2, Tex4, GX_COLOR1A1 // C2, TEX, KONST, RAS // Output reg 2 // KColor 3 // Tex * K2 + Lighting combiner += " lighting += mix(lightMapTexel * lu.kColor2, lightMapTexel, lu.kColor3);\n"; } else { // mix(Tex * K2, Tex, K3) + Lighting combiner += " lighting += lightMapTexel * lu.kColor2;\n"; } } // Next: Tex0TCG, Tex0, GX_COLOR1A1 // ZERO, TEX, KONST, RAS // Output reg prev // KColor 0 // Next: Tex1TCG, Tex1, GX_COLOR0A0 // ZERO, TEX, PREV, RAS // Output reg prev // Next: Tex2TCG, Tex2, GX_COLOR1A1 // ZERO, TEX, hasTex4 ? C2 : RAS, PREV // Output reg prev // (Tex0 * kColor0 + Lighting) * Tex1 + VertColor + Tex2 * Lighting if (info.m_hasPatternTex2) { if (info.m_hasPatternTex1) combiner += " colorOut = (patternTex1.sample(samp, vtf.uvs[0]) * lu.kColor0 + lighting) *\n" " patternTex2.sample(samp, vtf.uvs[1]) + vtf.color;\n"; else combiner += " colorOut = lighting * patternTex2.sample(samp, vtf.uvs[1]) + vtf.color;\n"; } else { combiner += " colorOut = vtf.color;\n"; } if (info.m_hasColorTex && !info.m_hasEnvMap && info.m_hasEnvBumpMap) { // Make previous stage indirect, mtx0 combiner += hecl::Format(" float2 indUvs = (envBumpMap.sample(samp, vtf.uvs[%d]).ra - float2(0.5, 0.5)) *\n" " float2(lu.fog.indScale, -lu.fog.indScale);", envBumpMapUv); combiner += " colorOut += colorTex.sample(samp, indUvs + vtf.uvs[2]) * lighting;\n"; } else if (info.m_hasEnvMap) { // Next: envTCG, envTex, NULL // PREV, TEX, KONST, ZERO // Output reg prev // KColor 1 // Make previous stage indirect, mtx0 if (info.m_hasColorTex) combiner += " colorOut += colorTex.sample(samp, vtf.uvs[2]) * lighting;\n"; combiner += hecl::Format(" float2 indUvs = (envBumpMap.sample(samp, vtf.uvs[%d]).ra - float2(0.5, 0.5)) *\n" " float2(lu.fog.indScale, -lu.fog.indScale);", envBumpMapUv); combiner += hecl::Format(" colorOut = mix(colorOut, envMap.sample(samp, indUvs + vtf.uvs[%d]), lu.kColor1);\n", envMapUv); } else if (info.m_hasColorTex) { combiner += " colorOut += colorTex.sample(samp, vtf.uvs[2]) * lighting;\n"; } break; case CFluidPlane::EFluidType::PoisonWater: if (info.m_hasLightmap) { combiner += hecl::Format(" float4 lightMapTexel = lightMap.sample(samp, vtf.uvs[%d]);\n", lightmapUv); // 0: Tex4TCG, Tex4, doubleLightmapBlend ? NULL : GX_COLOR1A1 // ZERO, TEX, KONST, doubleLightmapBlend ? ZERO : RAS // Output reg 2 // KColor 2 if (info.m_doubleLightmapBlend) { // 1: Tex4TCG2, Tex4, GX_COLOR1A1 // C2, TEX, KONST, RAS // Output reg 2 // KColor 3 // Tex * K2 + Lighting combiner += " lighting += mix(lightMapTexel * lu.kColor2, lightMapTexel, lu.kColor3);\n"; } else { // mix(Tex * K2, Tex, K3) + Lighting combiner += " lighting += lightMapTexel * lu.kColor2;\n"; } } // Next: Tex0TCG, Tex0, GX_COLOR1A1 // ZERO, TEX, KONST, RAS // Output reg prev // KColor 0 // Next: Tex1TCG, Tex1, GX_COLOR0A0 // ZERO, TEX, PREV, RAS // Output reg prev // Next: Tex2TCG, Tex2, GX_COLOR1A1 // ZERO, TEX, hasTex4 ? C2 : RAS, PREV // Output reg prev // (Tex0 * kColor0 + Lighting) * Tex1 + VertColor + Tex2 * Lighting if (info.m_hasPatternTex2) { if (info.m_hasPatternTex1) combiner += " colorOut = (patternTex1.sample(samp, vtf.uvs[0]) * lu.kColor0 + lighting) *\n" " patternTex2.sample(samp, vtf.uvs[1]) + vtf.color;\n"; else combiner += " colorOut = lighting * patternTex2.sample(samp, vtf.uvs[1]) + vtf.color;\n"; } else { combiner += " colorOut = vtf.color;\n"; } if (info.m_hasColorTex) { if (info.m_hasEnvBumpMap) { // Make previous stage indirect, mtx0 combiner += hecl::Format(" float2 indUvs = (envBumpMap.sample(samp, vtf.uvs[%d]).ra - float2(0.5, 0.5)) *\n" " float2(lu.fog.indScale, -lu.fog.indScale);", envBumpMapUv); combiner += " colorOut += colorTex.sample(samp, indUvs + vtf.uvs[2]) * lighting;\n"; } else { combiner += " colorOut += colorTex.sample(samp, vtf.uvs[2]) * lighting;\n"; } } break; case CFluidPlane::EFluidType::Lava: // 0: Tex0TCG, Tex0, GX_COLOR0A0 // ZERO, TEX, KONST, RAS // Output reg prev // KColor 0 // 1: Tex1TCG, Tex1, GX_COLOR0A0 // ZERO, TEX, PREV, RAS // Output reg prev // 2: Tex2TCG, Tex2, NULL // ZERO, TEX, ONE, PREV // Output reg prev // (Tex0 * kColor0 + VertColor) * Tex1 + VertColor + Tex2 if (info.m_hasPatternTex2) { if (info.m_hasPatternTex1) combiner += " colorOut = (patternTex1.sample(samp, vtf.uvs[0]) * lu.kColor0 + vtf.color) *\n" " patternTex2.sample(samp, vtf.uvs[1]) + vtf.color;\n"; else combiner += " colorOut = vtf.color * patternTex2.sample(samp, vtf.uvs[1]) + vtf.color;\n"; } else { combiner += " colorOut = vtf.color;\n"; } if (info.m_hasColorTex) combiner += " colorOut += colorTex.sample(samp, vtf.uvs[2]);\n"; if (info.m_hasBumpMap) { // 3: bumpMapTCG, bumpMap, NULL // ZERO, TEX, ONE, HALF // Output reg 0, no clamp, no bias // 4: bumpMapTCG2, bumpMap, NULL // ZERO, TEX, ONE, C0 // Output reg 0, subtract, clamp, no bias combiner += " float3 lightVec = lights[3].pos.xyz - vtf.mvPos.xyz;\n" " float lx = dot(vtf.mvTangent.xyz, lightVec);\n" " float ly = dot(vtf.mvBinorm.xyz, lightVec);\n"; combiner += hecl::Format(" float4 emboss1 = bumpMap.sample(samp, vtf.uvs[%d]) + float4(0.5);\n" " float4 emboss2 = bumpMap.sample(samp, vtf.uvs[%d] + float2(lx, ly));\n", bumpMapUv, bumpMapUv); // 5: NULL, NULL, NULL // ZERO, PREV, C0, ZERO // Output reg prev, scale 2, clamp // colorOut * clamp(emboss1 + 0.5 - emboss2, 0.0, 1.0) * 2.0 combiner += "colorOut *= clamp((emboss1 + float4(0.5) - emboss2) * float4(2.0), float4(0.0), float4(1.0));\n"; } break; case CFluidPlane::EFluidType::ThickLava: // 0: Tex0TCG, Tex0, GX_COLOR0A0 // ZERO, TEX, KONST, RAS // Output reg prev // KColor 0 // 1: Tex1TCG, Tex1, GX_COLOR0A0 // ZERO, TEX, PREV, RAS // Output reg prev // 2: Tex2TCG, Tex2, NULL // ZERO, TEX, ONE, PREV // Output reg prev // (Tex0 * kColor0 + VertColor) * Tex1 + VertColor + Tex2 if (info.m_hasPatternTex2) { if (info.m_hasPatternTex1) combiner += " colorOut = (patternTex1.sample(samp, vtf.uvs[0]) * lu.kColor0 + vtf.color) *\n" " patternTex2.sample(samp, vtf.uvs[1]) + vtf.color;\n"; else combiner += " colorOut = vtf.color * patternTex2.sample(samp, vtf.uvs[1]) + vtf.color;\n"; } else { combiner += " colorOut = vtf.color;\n"; } if (info.m_hasColorTex) combiner += " colorOut += colorTex.sample(samp, vtf.uvs[2]);\n"; if (info.m_hasBumpMap) { // 3: bumpMapTCG, bumpMap, NULL // ZERO, TEX, PREV, ZERO // Output reg prev, scale 2 combiner += hecl::Format(" float4 emboss1 = bumpMap.sample(samp, vtf.uvs[%d]) + float4(0.5);\n", bumpMapUv); combiner += "colorOut *= emboss1 * float4(2.0);\n"; } break; } combiner += " colorOut.a = kColor0.a;\n"; std::string finalVS = hecl::Format(VS, additionalTCGs.c_str()); std::string finalFS = hecl::Format(FS, textures.c_str(), combiner.c_str()); return ctx.newShaderPipeline(finalVS.c_str(), finalFS.c_str(), nullptr, nullptr, s_vtxFmt, CGraphics::g_ViewportSamples, info.m_additive ? boo::BlendFactor::One : boo::BlendFactor::SrcAlpha, info.m_additive ? boo::BlendFactor::One : boo::BlendFactor::InvSrcAlpha, boo::Primitive::TriStrips, boo::ZTest::LEqual, false, true, false, boo::CullMode::None); } boo::ObjToken CFluidPlaneShader::BuildShader(boo::MetalDataFactory::Context& ctx, const SFluidPlaneDoorShaderInfo& info) { if (!s_vtxFmt) { boo::VertexElementDescriptor elements[] = { {nullptr, nullptr, boo::VertexSemantic::Position4}, {nullptr, nullptr, boo::VertexSemantic::Normal4, 0}, {nullptr, nullptr, boo::VertexSemantic::Normal4, 1}, {nullptr, nullptr, boo::VertexSemantic::Normal4, 2}, {nullptr, nullptr, boo::VertexSemantic::Color} }; s_vtxFmt = ctx.newVertexFormat(5, elements); } std::string additionalTCGs; std::string textures; std::string combiner; int nextTex = 0; if (info.m_hasPatternTex1) textures += hecl::Format(",\ntexture2d patternTex1 [[ texture(%d) ]]", nextTex++); if (info.m_hasPatternTex2) textures += hecl::Format(",\ntexture2d patternTex2 [[ texture(%d) ]]", nextTex++); if (info.m_hasColorTex) textures += hecl::Format(",\ntexture2d colorTex [[ texture(%d) ]]", nextTex++); // Tex0 * kColor0 * Tex1 + Tex2 if (info.m_hasPatternTex1 && info.m_hasPatternTex2) { combiner += " colorOut = patternTex1.sample(samp, vtf.uvs[0]) * lu.kColor0 *\n" " patternTex2.sample(samp, vtf.uvs[1]);\n"; } else { combiner += " colorOut = float4(0.0);\n"; } if (info.m_hasColorTex) { combiner += " colorOut += colorTex.sample(samp, vtf.uvs[2]);\n"; } combiner += " colorOut.a = kColor0.a;\n"; std::string finalVS = hecl::Format(VS, additionalTCGs.c_str()); std::string finalFS = hecl::Format(FSDoor, textures.c_str(), combiner.c_str()); return ctx.newShaderPipeline(finalVS.c_str(), finalFS.c_str(), nullptr, nullptr, s_vtxFmt, CGraphics::g_ViewportSamples, boo::BlendFactor::SrcAlpha, boo::BlendFactor::InvSrcAlpha, boo::Primitive::TriStrips, boo::ZTest::LEqual, false, true, false, boo::CullMode::None); } boo::ObjToken CFluidPlaneShader::BuildBinding(boo::MetalDataFactory::Context& ctx, const boo::ObjToken& pipeline, bool door) { boo::ObjToken ubufs[] = { m_uniBuf.get(), m_uniBuf.get(), m_uniBuf.get() }; boo::PipelineStage ubufStages[] = { boo::PipelineStage::Vertex, boo::PipelineStage::Vertex, boo::PipelineStage::Fragment }; size_t ubufOffs[] = {0, 0, 768}; size_t ubufSizes[] = {768, 768, 256}; size_t texCount = 0; boo::ObjToken texs[7]; if (m_patternTex1) texs[texCount++] = (*m_patternTex1)->GetBooTexture(); if (m_patternTex2) texs[texCount++] = (*m_patternTex2)->GetBooTexture(); if (m_colorTex) texs[texCount++] = (*m_colorTex)->GetBooTexture(); if (m_bumpMap) texs[texCount++] = (*m_bumpMap)->GetBooTexture(); if (m_envMap) texs[texCount++] = (*m_envMap)->GetBooTexture(); if (m_envBumpMap) texs[texCount++] = (*m_envBumpMap)->GetBooTexture(); if (m_lightmap) texs[texCount++] = (*m_lightmap)->GetBooTexture(); return ctx.newShaderDataBinding(pipeline, s_vtxFmt, m_vbo.get(), nullptr, nullptr, door ? 1 : 3, ubufs, ubufStages, ubufOffs, ubufSizes, texCount, texs, nullptr, nullptr); } }