#include "ANIM.hpp" #include #include "zeus/Math.hpp" #include "hecl/Blender/Connection.hpp" namespace DataSpec::DNAMP3 { using ANIMOutStream = hecl::blender::ANIMOutStream; void ANIM::IANIM::sendANIMToBlender(hecl::blender::PyOutStream& os, const DNAANIM::RigInverter& rig, bool additive) const { os.format(fmt( "act.hecl_fps = round({})\n" "act.hecl_additive = {}\n" "act.hecl_looping = {}\n"), 1.0f / mainInterval, additive ? "True" : "False", looping ? "True" : "False"); auto kit = chanKeys.begin() + 1; std::vector fixedRotKeys; std::vector fixedTransKeys; for (const std::pair>& bone : bones) { const std::string* bName = rig.getCINF().getBoneNameFromId(bone.first); if (!bName) { if (std::get<0>(bone.second)) ++kit; if (std::get<1>(bone.second)) ++kit; if (std::get<2>(bone.second)) ++kit; continue; } os.format(fmt("bone_string = '{}'\n"), *bName); os << "action_group = act.groups.new(bone_string)\n" "\n"; if (std::get<0>(bone.second)) os << "rotCurves = []\n" "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=0, " "action_group=bone_string))\n" "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=1, " "action_group=bone_string))\n" "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=2, " "action_group=bone_string))\n" "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=3, " "action_group=bone_string))\n" "\n"; if (std::get<1>(bone.second)) os << "transCurves = []\n" "transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=0, " "action_group=bone_string))\n" "transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=1, " "action_group=bone_string))\n" "transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=2, " "action_group=bone_string))\n" "\n"; if (std::get<2>(bone.second)) os << "scaleCurves = []\n" "scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=0, " "action_group=bone_string))\n" "scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=1, " "action_group=bone_string))\n" "scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=2, " "action_group=bone_string))\n" "\n"; ANIMOutStream ao = os.beginANIMCurve(); if (std::get<0>(bone.second)) { const std::vector& rotKeys = *kit++; fixedRotKeys.clear(); fixedRotKeys.resize(rotKeys.size()); for (int c = 0; c < 4; ++c) { size_t idx = 0; for (const DNAANIM::Value& val : rotKeys) fixedRotKeys[idx++][c] = val.simd[c]; } for (zeus::CQuaternion& rot : fixedRotKeys) rot = rig.invertRotation(bone.first, rot); for (int c = 0; c < 4; ++c) { auto frameit = frames.begin(); ao.changeCurve(ANIMOutStream::CurveType::Rotate, c, rotKeys.size()); for (const zeus::CQuaternion& val : fixedRotKeys) ao.write(*frameit++, val[c]); } } if (std::get<1>(bone.second)) { const std::vector& transKeys = *kit++; fixedTransKeys.clear(); fixedTransKeys.resize(transKeys.size()); for (int c = 0; c < 3; ++c) { size_t idx = 0; for (const DNAANIM::Value& val : transKeys) fixedTransKeys[idx++][c] = val.simd[c]; } for (zeus::CVector3f& t : fixedTransKeys) t = rig.invertPosition(bone.first, t, !additive); for (int c = 0; c < 3; ++c) { auto frameit = frames.begin(); ao.changeCurve(ANIMOutStream::CurveType::Translate, c, fixedTransKeys.size()); for (const zeus::CVector3f& val : fixedTransKeys) ao.write(*frameit++, val[c]); } } if (std::get<2>(bone.second)) { const std::vector& scaleKeys = *kit++; for (int c = 0; c < 3; ++c) { auto frameit = frames.begin(); ao.changeCurve(ANIMOutStream::CurveType::Scale, c, scaleKeys.size()); for (const DNAANIM::Value& val : scaleKeys) ao.write(*frameit++, val.simd[c]); } } } } template <> void ANIM::Enumerate(typename Read::StreamT& reader) { atUint32 version = reader.readUint32Big(); switch (version) { case 0: m_anim.reset(new struct ANIM0); m_anim->read(reader); break; case 1: m_anim.reset(new struct ANIM1); m_anim->read(reader); break; default: Log.report(logvisor::Fatal, fmt("unrecognized ANIM version")); break; } } template <> void ANIM::Enumerate(typename Write::StreamT& writer) { writer.writeUint32Big(m_anim->m_version); m_anim->write(writer); } template <> void ANIM::Enumerate(typename BinarySize::StreamT& s) { s += 4; m_anim->binarySize(s); } const char* ANIM::ANIM0::DNAType() { return "ANIM0"; } template <> void ANIM::ANIM0::Enumerate(athena::io::IStreamReader& reader) { Header head; head.read(reader); mainInterval = head.interval; frames.clear(); frames.reserve(head.keyCount); for (size_t k = 0; k < head.keyCount; ++k) frames.push_back(k); std::map boneMap; for (size_t b = 0; b < head.boneSlotCount; ++b) { atUint8 idx = reader.readUByte(); if (idx == 0xff) continue; boneMap[idx] = b; } atUint32 boneCount = reader.readUint32Big(); bones.clear(); bones.reserve(boneCount); for (size_t b = 0; b < boneCount; ++b) { bones.emplace_back(boneMap[b], std::make_tuple(false, false, false)); atUint8 idx = reader.readUByte(); if (idx != 0xff) std::get<0>(bones.back().second) = true; } boneCount = reader.readUint32Big(); for (size_t b = 0; b < boneCount; ++b) { atUint8 idx = reader.readUByte(); if (idx != 0xff) std::get<1>(bones[b].second) = true; } boneCount = reader.readUint32Big(); for (size_t b = 0; b < boneCount; ++b) { atUint8 idx = reader.readUByte(); if (idx != 0xff) std::get<2>(bones[b].second) = true; } channels.clear(); chanKeys.clear(); channels.emplace_back(); channels.back().type = DNAANIM::Channel::Type::KfHead; chanKeys.emplace_back(); for (const std::pair>& bone : bones) { if (std::get<0>(bone.second)) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Rotation; chanKeys.emplace_back(); } if (std::get<1>(bone.second)) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Translation; chanKeys.emplace_back(); } if (std::get<2>(bone.second)) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Scale; chanKeys.emplace_back(); } } reader.readUint32Big(); auto kit = chanKeys.begin() + 1; for (const std::pair>& bone : bones) { if (std::get<0>(bone.second)) ++kit; if (std::get<1>(bone.second)) ++kit; if (std::get<2>(bone.second)) { std::vector& keys = *kit++; for (size_t k = 0; k < head.keyCount; ++k) keys.emplace_back(reader.readVec3fBig()); } } reader.readUint32Big(); kit = chanKeys.begin() + 1; for (const std::pair>& bone : bones) { if (std::get<0>(bone.second)) { std::vector& keys = *kit++; for (size_t k = 0; k < head.keyCount; ++k) keys.emplace_back(reader.readVec4fBig()); } if (std::get<1>(bone.second)) ++kit; if (std::get<2>(bone.second)) ++kit; } reader.readUint32Big(); kit = chanKeys.begin() + 1; for (const std::pair>& bone : bones) { if (std::get<0>(bone.second)) ++kit; if (std::get<1>(bone.second)) { std::vector& keys = *kit++; for (size_t k = 0; k < head.keyCount; ++k) keys.emplace_back(reader.readVec3fBig()); } if (std::get<2>(bone.second)) ++kit; } } template <> void ANIM::ANIM0::Enumerate(athena::io::IStreamWriter& writer) { Header head; head.unk0 = 0; head.unk1 = 0; head.unk2 = 0; head.keyCount = frames.size(); head.duration = head.keyCount * mainInterval; head.interval = mainInterval; atUint32 maxId = 0; for (const std::pair>& bone : bones) maxId = std::max(maxId, bone.first); head.boneSlotCount = maxId + 1; head.write(writer); for (size_t s = 0; s < head.boneSlotCount; ++s) { size_t boneIdx = 0; bool found = false; for (const std::pair>& bone : bones) { if (s == bone.first) { writer.writeUByte(boneIdx); found = true; break; } ++boneIdx; } if (!found) writer.writeUByte(0xff); } writer.writeUint32Big(bones.size()); size_t boneIdx = 0; size_t rotKeyCount = 0; for (const std::pair>& bone : bones) { if (std::get<0>(bone.second)) { writer.writeUByte(boneIdx); ++rotKeyCount; } else writer.writeUByte(0xff); ++boneIdx; } writer.writeUint32Big(bones.size()); boneIdx = 0; size_t transKeyCount = 0; for (const std::pair>& bone : bones) { if (std::get<1>(bone.second)) { writer.writeUByte(boneIdx); ++transKeyCount; } else writer.writeUByte(0xff); ++boneIdx; } writer.writeUint32Big(bones.size()); boneIdx = 0; size_t scaleKeyCount = 0; for (const std::pair>& bone : bones) { if (std::get<2>(bone.second)) { writer.writeUByte(boneIdx); ++scaleKeyCount; } else writer.writeUByte(0xff); ++boneIdx; } writer.writeUint32Big(scaleKeyCount * head.keyCount); auto cit = chanKeys.begin(); for (const std::pair>& bone : bones) { if (std::get<0>(bone.second)) ++cit; if (std::get<1>(bone.second)) ++cit; if (std::get<2>(bone.second)) { const std::vector& keys = *cit++; auto kit = keys.begin(); for (size_t k = 0; k < head.keyCount; ++k) writer.writeVec3fBig(atVec3f{(*kit++).simd}); } } writer.writeUint32Big(rotKeyCount * head.keyCount); cit = chanKeys.begin(); for (const std::pair>& bone : bones) { if (std::get<0>(bone.second)) { const std::vector& keys = *cit++; auto kit = keys.begin(); for (size_t k = 0; k < head.keyCount; ++k) writer.writeVec4fBig(atVec4f{(*kit++).simd}); } if (std::get<1>(bone.second)) ++cit; if (std::get<2>(bone.second)) ++cit; } writer.writeUint32Big(transKeyCount * head.keyCount); cit = chanKeys.begin(); for (const std::pair>& bone : bones) { if (std::get<0>(bone.second)) ++cit; if (std::get<1>(bone.second)) { const std::vector& keys = *cit++; auto kit = keys.begin(); for (size_t k = 0; k < head.keyCount; ++k) writer.writeVec3fBig(atVec3f{(*kit++).simd}); } if (std::get<2>(bone.second)) ++cit; } } template <> void ANIM::ANIM0::Enumerate(size_t& __isz) { Header head; atUint32 maxId = 0; for (const std::pair>& bone : bones) maxId = std::max(maxId, bone.first); head.binarySize(__isz); __isz += maxId + 1; __isz += bones.size() * 3 + 12; __isz += 12; for (const std::pair>& bone : bones) { if (std::get<0>(bone.second)) __isz += head.keyCount * 16; if (std::get<1>(bone.second)) __isz += head.keyCount * 12; if (std::get<2>(bone.second)) __isz += head.keyCount * 12; } } static float ComputeFrames(const std::vector& keyTimes, std::vector& framesOut) { if (keyTimes.size() <= 1) return 0.0; float mainInterval = FLT_MAX; float lastTime = keyTimes[0]; for (auto it = keyTimes.begin() + 1; it != keyTimes.end(); ++it) { float diff = *it - lastTime; if (diff < mainInterval) mainInterval = diff; lastTime = *it; } float fps = round(1.0 / mainInterval); if (fps < 15.0) fps = 15.0; mainInterval = 1.0 / fps; framesOut.clear(); framesOut.reserve(keyTimes.size()); atUint32 frameAccum = 0; for (float time : keyTimes) { while (frameAccum * mainInterval < time) ++frameAccum; framesOut.push_back(frameAccum); } return mainInterval; } const char* ANIM::ANIM1::DNAType() { return "ANIM1"; } template <> void ANIM::ANIM1::Enumerate(athena::io::IStreamReader& reader) { Header head; head.read(reader); std::vector keyTimes; keyTimes.reserve(head.keyCount); for (size_t k = 0; k < head.keyCount; ++k) keyTimes.push_back(reader.readFloatBig()); mainInterval = ComputeFrames(keyTimes, frames); atUint8 boneFlagCount = reader.readUByte(); bones.clear(); bones.reserve(boneFlagCount); atUint32 boneChannelCount = 0; for (atUint8 f = 0; f < boneFlagCount; ++f) { atUint8 flag = reader.readUByte(); bones.emplace_back(f, std::make_tuple(bool(flag & 0x1), bool(flag & 0x2), bool(flag & 0x4))); if (flag & 0x1) ++boneChannelCount; if (flag & 0x2) ++boneChannelCount; if (flag & 0x4) ++boneChannelCount; } std::vector initBlock; initBlock.reserve(head.initBlockSize / 2); for (size_t i = 0; i < head.initBlockSize / 2; ++i) initBlock.push_back(reader.readInt16Big()); atUint32 rawChannelCount = reader.readUint32Big(); reader.readUint32Big(); reader.readUint32Big(); std::vector chanBitCounts; chanBitCounts.reserve(rawChannelCount); for (size_t c = 0; c < rawChannelCount; ++c) chanBitCounts.push_back(reader.readUByte()); channels.clear(); channels.reserve(boneChannelCount + 1); channels.emplace_back(); channels.back().type = DNAANIM::Channel::Type::KfHead; auto initsIt = initBlock.begin(); auto bitsIt = chanBitCounts.begin(); for (const std::pair>& bone : bones) { if (std::get<0>(bone.second)) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::RotationMP3; chan.i[0] = *initsIt++; chan.q[0] = *bitsIt++; chan.i[1] = *initsIt++; chan.q[1] = *bitsIt++; chan.i[2] = *initsIt++; chan.q[2] = *bitsIt++; chan.i[3] = *initsIt++; chan.q[3] = *bitsIt++; } if (std::get<1>(bone.second)) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Translation; chan.i[0] = *initsIt++; chan.q[0] = *bitsIt++; chan.i[1] = *initsIt++; chan.q[1] = *bitsIt++; chan.i[2] = *initsIt++; chan.q[2] = *bitsIt++; } if (std::get<2>(bone.second)) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Scale; chan.i[0] = *initsIt++; chan.q[0] = *bitsIt++; chan.i[1] = *initsIt++; chan.q[1] = *bitsIt++; chan.i[2] = *initsIt++; chan.q[2] = *bitsIt++; } } size_t bsSize = DNAANIM::ComputeBitstreamSize(head.keyCount - 1, channels); std::unique_ptr bsData = reader.readUBytes(bsSize); DNAANIM::BitstreamReader bsReader; chanKeys = bsReader.read(bsData.get(), head.keyCount - 1, channels, 32767, head.translationMult, head.scaleMult); } template <> void ANIM::ANIM1::Enumerate(athena::io::IStreamWriter& writer) {} template <> void ANIM::ANIM1::Enumerate(size_t& __isz) {} } // namespace DataSpec::DNAMP3