#include "common.hpp" #include "../gpu.hpp" #include "model/shader.hpp" #include "movie_player/shader.hpp" #include "stream/shader.hpp" #include #include #include #include #include #include namespace aurora { extern std::string g_configPath; } // namespace aurora namespace aurora::gfx { static logvisor::Module Log("aurora::gfx"); using gpu::g_device; using gpu::g_queue; #ifdef AURORA_GFX_DEBUG_GROUPS std::vector g_debugGroupStack; #endif constexpr uint64_t UniformBufferSize = 3145728; // 3mb constexpr uint64_t VertexBufferSize = 3145728; // 3mb constexpr uint64_t IndexBufferSize = 1048576; // 1mb constexpr uint64_t StorageBufferSize = 8388608; // 8mb constexpr uint64_t TextureUploadSize = 25165824; // 24mb constexpr uint64_t StagingBufferSize = UniformBufferSize + VertexBufferSize + IndexBufferSize + StorageBufferSize + TextureUploadSize; struct ShaderState { movie_player::State moviePlayer; stream::State stream; model::State model; }; struct ShaderDrawCommand { ShaderType type; union { movie_player::DrawData moviePlayer; stream::DrawData stream; model::DrawData model; }; }; enum class CommandType { SetViewport, SetScissor, Draw, }; struct Command { CommandType type; #ifdef AURORA_GFX_DEBUG_GROUPS std::vector debugGroupStack; #endif union Data { struct SetViewportCommand { float left; float top; float width; float height; float znear; float zfar; bool operator==(const SetViewportCommand& rhs) const = default; } setViewport; struct SetScissorCommand { uint32_t x; uint32_t y; uint32_t w; uint32_t h; auto operator<=>(const SetScissorCommand&) const = default; } setScissor; ShaderDrawCommand draw; } data; }; } // namespace aurora::gfx namespace aurora { // For types that we can't ensure are safe to hash with has_unique_object_representations, // we create specialized methods to handle them. Note that these are highly dependent on // the structure definition, which could easily change with Dawn updates. template <> inline XXH64_hash_t xxh3_hash(const wgpu::BindGroupDescriptor& input, XXH64_hash_t seed) { constexpr auto offset = sizeof(void*) * 2; // skip nextInChain, label const auto hash = xxh3_hash_s(reinterpret_cast(&input) + offset, sizeof(wgpu::BindGroupDescriptor) - offset - sizeof(void*) /* skip entries */, seed); return xxh3_hash_s(input.entries, sizeof(wgpu::BindGroupEntry) * input.entryCount, hash); } template <> inline XXH64_hash_t xxh3_hash(const wgpu::SamplerDescriptor& input, XXH64_hash_t seed) { constexpr auto offset = sizeof(void*) * 2; // skip nextInChain, label return xxh3_hash_s(reinterpret_cast(&input) + offset, sizeof(wgpu::SamplerDescriptor) - offset - 2 /* skip padding */, seed); } } // namespace aurora namespace aurora::gfx { using NewPipelineCallback = std::function; std::mutex g_pipelineMutex; static bool g_hasPipelineThread = false; static std::thread g_pipelineThread; static std::atomic_bool g_pipelineThreadEnd; static std::condition_variable g_pipelineCv; static absl::flat_hash_map g_pipelines; static std::deque> g_queuedPipelines; static absl::flat_hash_map g_cachedBindGroups; static absl::flat_hash_map g_cachedSamplers; std::atomic_uint32_t queuedPipelines; std::atomic_uint32_t createdPipelines; static ByteBuffer g_verts; static ByteBuffer g_uniforms; static ByteBuffer g_indices; static ByteBuffer g_storage; static ByteBuffer g_staticStorage; static ByteBuffer g_textureUpload; wgpu::Buffer g_vertexBuffer; wgpu::Buffer g_uniformBuffer; wgpu::Buffer g_indexBuffer; wgpu::Buffer g_storageBuffer; size_t g_staticStorageLastSize = 0; static std::array g_stagingBuffers; static wgpu::SupportedLimits g_cachedLimits; static ShaderState g_state; static PipelineRef g_currentPipeline; using CommandList = std::vector; struct RenderPass { u32 resolveTarget = UINT32_MAX; ClipRect resolveRect; zeus::CColor clearColor{0.f, 0.f}; CommandList commands; bool clear = true; }; static std::vector g_renderPasses; static u32 g_currentRenderPass; std::vector g_resolvedTextures; std::vector g_textureUploads; static ByteBuffer g_serializedPipelines{}; static u32 g_serializedPipelineCount = 0; template static void serialize_pipeline_config(ShaderType type, const PipelineConfig& config) { static_assert(std::has_unique_object_representations_v); g_serializedPipelines.append(&type, sizeof(type)); const u32 configSize = sizeof(config); g_serializedPipelines.append(&configSize, sizeof(configSize)); g_serializedPipelines.append(&config, configSize); ++g_serializedPipelineCount; } template static PipelineRef find_pipeline(ShaderType type, const PipelineConfig& config, NewPipelineCallback&& cb, bool serialize = true) { PipelineRef hash = xxh3_hash(config, static_cast(type)); bool found = false; { std::scoped_lock guard{g_pipelineMutex}; found = g_pipelines.contains(hash); if (!found) { if (g_hasPipelineThread) { const auto ref = std::find_if(g_queuedPipelines.begin(), g_queuedPipelines.end(), [=](auto v) { return v.first == hash; }); if (ref != g_queuedPipelines.end()) { found = true; } } else { g_pipelines.try_emplace(hash, cb()); if (serialize) { serialize_pipeline_config(type, config); } found = true; } } if (!found) { g_queuedPipelines.emplace_back(std::pair{hash, std::move(cb)}); if (serialize) { serialize_pipeline_config(type, config); } } } if (!found) { g_pipelineCv.notify_one(); queuedPipelines++; } return hash; } static inline void push_command(CommandType type, const Command::Data& data) { g_renderPasses[g_currentRenderPass].commands.push_back({ .type = type, #ifdef AURORA_GFX_DEBUG_GROUPS .debugGroupStack = g_debugGroupStack, #endif .data = data, }); } static void push_draw_command(ShaderDrawCommand data) { push_command(CommandType::Draw, Command::Data{.draw = data}); } static Command::Data::SetViewportCommand g_cachedViewport; void set_viewport(float left, float top, float width, float height, float znear, float zfar) noexcept { Command::Data::SetViewportCommand cmd{left, top, width, height, znear, zfar}; if (cmd != g_cachedViewport) { push_command(CommandType::SetViewport, Command::Data{.setViewport = cmd}); g_cachedViewport = cmd; } } static Command::Data::SetScissorCommand g_cachedScissor; void set_scissor(uint32_t x, uint32_t y, uint32_t w, uint32_t h) noexcept { Command::Data::SetScissorCommand cmd{x, y, w, h}; if (cmd != g_cachedScissor) { push_command(CommandType::SetScissor, Command::Data{.setScissor = cmd}); g_cachedScissor = cmd; } } bool operator==(const wgpu::Extent3D& lhs, const wgpu::Extent3D& rhs) { return lhs.width == rhs.width && lhs.height == rhs.height && lhs.depthOrArrayLayers == rhs.depthOrArrayLayers; } void resolve_color(const ClipRect& rect, uint32_t bind, GX::TextureFormat fmt, bool clear_depth) noexcept { if (g_resolvedTextures.size() < bind + 1) { g_resolvedTextures.resize(bind + 1); } const wgpu::Extent3D size{ .width = static_cast(rect.width), .height = static_cast(rect.height), }; if (!g_resolvedTextures[bind] || g_resolvedTextures[bind]->size != size) { g_resolvedTextures[bind] = new_render_texture(rect.width, rect.height, fmt, "Resolved Texture"); } auto& currentPass = g_renderPasses[g_currentRenderPass]; currentPass.resolveTarget = bind; currentPass.resolveRect = rect; auto& newPass = g_renderPasses.emplace_back(); newPass.clearColor = gx::g_gxState.clearColor; newPass.clear = false; // TODO ++g_currentRenderPass; } void resolve_depth(const ClipRect& rect, uint32_t bind, GX::TextureFormat fmt) noexcept { // TODO } void queue_movie_player(const TextureHandle& tex_y, const TextureHandle& tex_u, const TextureHandle& tex_v, float h_pad, float v_pad) noexcept { auto data = movie_player::make_draw_data(g_state.moviePlayer, tex_y, tex_u, tex_v, h_pad, v_pad); push_draw_command({.type = ShaderType::MoviePlayer, .moviePlayer = data}); } template <> PipelineRef pipeline_ref(movie_player::PipelineConfig config) { return find_pipeline(ShaderType::MoviePlayer, config, [=]() { return create_pipeline(g_state.moviePlayer, config); }); } template <> const stream::State& get_state() { return g_state.stream; } template <> void push_draw_command(stream::DrawData data) { push_draw_command({.type = ShaderType::Stream, .stream = data}); } template <> PipelineRef pipeline_ref(stream::PipelineConfig config) { return find_pipeline(ShaderType::Stream, config, [=]() { return create_pipeline(g_state.stream, config); }); } template <> void push_draw_command(model::DrawData data) { push_draw_command({.type = ShaderType::Model, .model = data}); } template <> PipelineRef pipeline_ref(model::PipelineConfig config) { return find_pipeline(ShaderType::Model, config, [=]() { return create_pipeline(g_state.model, config); }); } static void pipeline_worker() { bool hasMore = false; while (true) { std::pair cb; { std::unique_lock lock{g_pipelineMutex}; if (!hasMore) { g_pipelineCv.wait(lock, [] { return !g_queuedPipelines.empty() || g_pipelineThreadEnd; }); } if (g_pipelineThreadEnd) { break; } cb = std::move(g_queuedPipelines.front()); } auto result = cb.second(); // std::this_thread::sleep_for(std::chrono::milliseconds{1500}); { std::scoped_lock lock{g_pipelineMutex}; if (!g_pipelines.try_emplace(cb.first, std::move(result)).second) { Log.report(logvisor::Fatal, FMT_STRING("Duplicate pipeline {}"), cb.first); unreachable(); } g_queuedPipelines.pop_front(); hasMore = !g_queuedPipelines.empty(); } createdPipelines++; queuedPipelines--; } } void initialize() { // No async pipelines for OpenGL (ES) if (gpu::g_backendType != wgpu::BackendType::OpenGL && gpu::g_backendType != wgpu::BackendType::OpenGLES) { g_pipelineThread = std::thread(pipeline_worker); g_hasPipelineThread = true; } // For uniform & storage buffer offset alignments g_device.GetLimits(&g_cachedLimits); const auto createBuffer = [](wgpu::Buffer& out, wgpu::BufferUsage usage, uint64_t size, const char* label) { const wgpu::BufferDescriptor descriptor{ .label = label, .usage = usage, .size = size, }; out = g_device.CreateBuffer(&descriptor); }; createBuffer(g_uniformBuffer, wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, UniformBufferSize, "Shared Uniform Buffer"); createBuffer(g_vertexBuffer, wgpu::BufferUsage::Vertex | wgpu::BufferUsage::CopyDst, VertexBufferSize, "Shared Vertex Buffer"); createBuffer(g_indexBuffer, wgpu::BufferUsage::Index | wgpu::BufferUsage::CopyDst, IndexBufferSize, "Shared Index Buffer"); createBuffer(g_storageBuffer, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopyDst, StorageBufferSize, "Shared Storage Buffer"); for (int i = 0; i < g_stagingBuffers.size(); ++i) { const auto label = fmt::format(FMT_STRING("Staging Buffer {}"), i); createBuffer(g_stagingBuffers[i], wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, StagingBufferSize, label.c_str()); } map_staging_buffer(); g_state.moviePlayer = movie_player::construct_state(); g_state.stream = stream::construct_state(); g_state.model = model::construct_state(); { // Load serialized pipeline cache std::string path = g_configPath + "pipeline_cache.bin"; std::ifstream file(path, std::ios::in | std::ios::binary | std::ios::ate); if (file) { const size_t size = file.tellg(); file.seekg(0, std::ios::beg); constexpr size_t headerSize = sizeof(g_serializedPipelineCount); if (size != -1 && size > headerSize) { g_serializedPipelines.append_zeroes(size - headerSize); file.read(reinterpret_cast(&g_serializedPipelineCount), headerSize); file.read(reinterpret_cast(g_serializedPipelines.data()), size - headerSize); } } } if (g_serializedPipelineCount > 0) { size_t offset = 0; while (offset < g_serializedPipelines.size()) { ShaderType type = *reinterpret_cast(g_serializedPipelines.data() + offset); offset += sizeof(ShaderType); u32 size = *reinterpret_cast(g_serializedPipelines.data() + offset); offset += sizeof(u32); switch (type) { case ShaderType::MoviePlayer: { if (size != sizeof(movie_player::PipelineConfig)) { break; } const auto config = *reinterpret_cast(g_serializedPipelines.data() + offset); find_pipeline( type, config, [=]() { return movie_player::create_pipeline(g_state.moviePlayer, config); }, false); } break; case ShaderType::Stream: { if (size != sizeof(stream::PipelineConfig)) { break; } const auto config = *reinterpret_cast(g_serializedPipelines.data() + offset); if (config.version != gx::GXPipelineConfigVersion) { break; } find_pipeline( type, config, [=]() { return stream::create_pipeline(g_state.stream, config); }, false); } break; case ShaderType::Model: { if (size != sizeof(model::PipelineConfig)) { break; } const auto config = *reinterpret_cast(g_serializedPipelines.data() + offset); if (config.version != gx::GXPipelineConfigVersion) { break; } find_pipeline( type, config, [=]() { return model::create_pipeline(g_state.model, config); }, false); } break; default: Log.report(logvisor::Warning, FMT_STRING("Unknown pipeline type {}"), type); break; } offset += size; } } } void shutdown() { if (g_hasPipelineThread) { g_pipelineThreadEnd = true; g_pipelineCv.notify_all(); g_pipelineThread.join(); } { // Write serialized pipelines to file std::ofstream file(g_configPath + "pipeline_cache.bin", std::ios::out | std::ios::trunc | std::ios::binary); if (file) { file.write(reinterpret_cast(&g_serializedPipelineCount), sizeof(g_serializedPipelineCount)); file.write(reinterpret_cast(g_serializedPipelines.data()), g_serializedPipelines.size()); } } gx::shutdown(); g_resolvedTextures.clear(); g_cachedBindGroups.clear(); g_cachedSamplers.clear(); g_pipelines.clear(); g_vertexBuffer = {}; g_uniformBuffer = {}; g_indexBuffer = {}; g_storageBuffer = {}; g_stagingBuffers.fill({}); g_state = {}; } static size_t currentStagingBuffer = 0; static bool bufferMapped = false; void map_staging_buffer() { bufferMapped = false; g_stagingBuffers[currentStagingBuffer].MapAsync( wgpu::MapMode::Write, 0, StagingBufferSize, [](WGPUBufferMapAsyncStatus status, void* userdata) { if (status == WGPUBufferMapAsyncStatus_DestroyedBeforeCallback) { return; } else if (status != WGPUBufferMapAsyncStatus_Success) { Log.report(logvisor::Fatal, FMT_STRING("Buffer mapping failed: {}"), status); unreachable(); } *static_cast(userdata) = true; }, &bufferMapped); } void begin_frame() { while (!bufferMapped) { g_device.Tick(); } size_t bufferOffset = 0; auto& stagingBuf = g_stagingBuffers[currentStagingBuffer]; const auto mapBuffer = [&](ByteBuffer& buf, uint64_t size) { buf = ByteBuffer{static_cast(stagingBuf.GetMappedRange(bufferOffset, size)), size}; bufferOffset += size; }; mapBuffer(g_verts, VertexBufferSize); mapBuffer(g_uniforms, UniformBufferSize); mapBuffer(g_indices, IndexBufferSize); mapBuffer(g_storage, StorageBufferSize); mapBuffer(g_textureUpload, TextureUploadSize); g_renderPasses.emplace_back(); g_currentRenderPass = 0; } // for imgui debug size_t g_lastVertSize; size_t g_lastUniformSize; size_t g_lastIndexSize; size_t g_lastStorageSize; void end_frame(const wgpu::CommandEncoder& cmd) { uint64_t bufferOffset = 0; const auto writeBuffer = [&](ByteBuffer& buf, wgpu::Buffer& out, uint64_t size, std::string_view label) { const auto writeSize = buf.size(); // Only need to copy this many bytes if (writeSize > 0) { cmd.CopyBufferToBuffer(g_stagingBuffers[currentStagingBuffer], bufferOffset, out, 0, writeSize); buf.clear(); } bufferOffset += size; return writeSize; }; g_stagingBuffers[currentStagingBuffer].Unmap(); g_lastVertSize = writeBuffer(g_verts, g_vertexBuffer, VertexBufferSize, "Vertex"); g_lastUniformSize = writeBuffer(g_uniforms, g_uniformBuffer, UniformBufferSize, "Uniform"); g_lastIndexSize = writeBuffer(g_indices, g_indexBuffer, IndexBufferSize, "Index"); g_lastStorageSize = writeBuffer(g_storage, g_storageBuffer, StorageBufferSize, "Storage"); { // Perform texture copies for (const auto& item : g_textureUploads) { const wgpu::ImageCopyBuffer buf{ .layout = wgpu::TextureDataLayout{ .offset = item.layout.offset + bufferOffset, .bytesPerRow = ALIGN(item.layout.bytesPerRow, 256), .rowsPerImage = item.layout.rowsPerImage, }, .buffer = g_stagingBuffers[currentStagingBuffer], }; cmd.CopyBufferToTexture(&buf, &item.tex, &item.size); } g_textureUploads.clear(); g_textureUpload.clear(); } currentStagingBuffer = (currentStagingBuffer + 1) % g_stagingBuffers.size(); map_staging_buffer(); } void render(wgpu::CommandEncoder& cmd) { for (u32 i = 0; i < g_renderPasses.size(); ++i) { const auto& passInfo = g_renderPasses[i]; bool finalPass = i == g_renderPasses.size() - 1; if (finalPass && passInfo.resolveTarget != UINT32_MAX) { Log.report(logvisor::Fatal, FMT_STRING("Final render pass must not have resolve target")); unreachable(); } const std::array attachments{ wgpu::RenderPassColorAttachment{ .view = gpu::g_frameBuffer.view, .resolveTarget = gpu::g_graphicsConfig.msaaSamples > 1 ? gpu::g_frameBufferResolved.view : nullptr, .loadOp = passInfo.clear ? wgpu::LoadOp::Clear : wgpu::LoadOp::Load, .storeOp = wgpu::StoreOp::Store, .clearValue = { .r = passInfo.clearColor.r(), .g = passInfo.clearColor.g(), .b = passInfo.clearColor.b(), .a = passInfo.clearColor.a(), }, }, }; const wgpu::RenderPassDepthStencilAttachment depthStencilAttachment{ .view = gpu::g_depthBuffer.view, .depthLoadOp = wgpu::LoadOp::Clear, .depthStoreOp = wgpu::StoreOp::Discard, .depthClearValue = 1.f, }; const auto label = fmt::format(FMT_STRING("Render pass {}"), i); const wgpu::RenderPassDescriptor renderPassDescriptor{ .label = label.c_str(), .colorAttachmentCount = attachments.size(), .colorAttachments = attachments.data(), .depthStencilAttachment = &depthStencilAttachment, }; auto pass = cmd.BeginRenderPass(&renderPassDescriptor); render_pass(pass, i); pass.End(); if (passInfo.resolveTarget != UINT32_MAX) { wgpu::ImageCopyTexture src{ .origin = wgpu::Origin3D{ .x = static_cast(passInfo.resolveRect.x), .y = static_cast(passInfo.resolveRect.y), }, }; if (gpu::g_graphicsConfig.msaaSamples > 1) { src.texture = gpu::g_frameBufferResolved.texture; } else { src.texture = gpu::g_frameBuffer.texture; } auto& target = g_resolvedTextures[passInfo.resolveTarget]; const wgpu::ImageCopyTexture dst{ .texture = target->texture, }; const wgpu::Extent3D size{ .width = static_cast(passInfo.resolveRect.width), .height = static_cast(passInfo.resolveRect.height), }; cmd.CopyTextureToTexture(&src, &dst, &size); } } g_renderPasses.clear(); } void render_pass(const wgpu::RenderPassEncoder& pass, u32 idx) { g_currentPipeline = UINT64_MAX; #ifdef AURORA_GFX_DEBUG_GROUPS std::vector lastDebugGroupStack; #endif for (const auto& cmd : g_renderPasses[idx].commands) { #ifdef AURORA_GFX_DEBUG_GROUPS { size_t firstDiff = lastDebugGroupStack.size(); for (size_t i = 0; i < lastDebugGroupStack.size(); ++i) { if (i >= cmd.debugGroupStack.size() || cmd.debugGroupStack[i] != lastDebugGroupStack[i]) { firstDiff = i; break; } } for (size_t i = firstDiff; i < lastDebugGroupStack.size(); ++i) { pass.PopDebugGroup(); } for (size_t i = firstDiff; i < cmd.debugGroupStack.size(); ++i) { pass.PushDebugGroup(cmd.debugGroupStack[i].c_str()); } lastDebugGroupStack = cmd.debugGroupStack; } #endif switch (cmd.type) { case CommandType::SetViewport: { const auto& vp = cmd.data.setViewport; pass.SetViewport(vp.left, vp.top, vp.width, vp.height, vp.znear, vp.zfar); } break; case CommandType::SetScissor: { const auto& sc = cmd.data.setScissor; pass.SetScissorRect(sc.x, sc.y, sc.w, sc.h); } break; case CommandType::Draw: { const auto& draw = cmd.data.draw; switch (draw.type) { case ShaderType::MoviePlayer: movie_player::render(g_state.moviePlayer, draw.moviePlayer, pass); break; case ShaderType::Stream: stream::render(g_state.stream, draw.stream, pass); break; case ShaderType::Model: model::render(g_state.model, draw.model, pass); break; } } break; } } #ifdef AURORA_GFX_DEBUG_GROUPS for (size_t i = 0; i < lastDebugGroupStack.size(); ++i) { pass.PopDebugGroup(); } #endif } bool bind_pipeline(PipelineRef ref, const wgpu::RenderPassEncoder& pass) { if (ref == g_currentPipeline) { return true; } std::lock_guard guard{g_pipelineMutex}; const auto it = g_pipelines.find(ref); if (it == g_pipelines.end()) { return false; } pass.SetPipeline(it->second); g_currentPipeline = ref; return true; } static inline Range push(ByteBuffer& target, const uint8_t* data, size_t length, size_t alignment) { size_t padding = 0; if (alignment != 0) { padding = alignment - length % alignment; } auto begin = target.size(); if (length == 0) { length = alignment; target.append_zeroes(alignment); } else { target.append(data, length); if (padding > 0) { target.append_zeroes(padding); } } return {static_cast(begin), static_cast(length + padding)}; } static inline Range map(ByteBuffer& target, size_t length, size_t alignment) { size_t padding = 0; if (alignment != 0) { padding = alignment - length % alignment; } if (length == 0) { length = alignment; } auto begin = target.size(); target.append_zeroes(length + padding); return {static_cast(begin), static_cast(length + padding)}; } Range push_verts(const uint8_t* data, size_t length) { return push(g_verts, data, length, 4); } Range push_indices(const uint8_t* data, size_t length) { return push(g_indices, data, length, 4); } Range push_uniform(const uint8_t* data, size_t length) { return push(g_uniforms, data, length, g_cachedLimits.limits.minUniformBufferOffsetAlignment); } Range push_storage(const uint8_t* data, size_t length) { return push(g_storage, data, length, g_cachedLimits.limits.minStorageBufferOffsetAlignment); } Range push_static_storage(const uint8_t* data, size_t length) { auto range = push(g_staticStorage, data, length, g_cachedLimits.limits.minStorageBufferOffsetAlignment); range.isStatic = true; return range; } Range push_texture_data(const uint8_t* data, size_t length, u32 bytesPerRow, u32 rowsPerImage) { // For CopyBufferToTexture, we need an alignment of 256 per row (see Dawn kTextureBytesPerRowAlignment) const auto copyBytesPerRow = ALIGN(bytesPerRow, 256); const auto range = map(g_textureUpload, copyBytesPerRow * rowsPerImage, 0); u8* dst = g_textureUpload.data() + range.offset; for (u32 i = 0; i < rowsPerImage; ++i) { memcpy(dst, data, bytesPerRow); data += bytesPerRow; dst += copyBytesPerRow; } return range; } std::pair map_verts(size_t length) { const auto range = map(g_verts, length, 4); return {ByteBuffer{g_verts.data() + range.offset, range.size}, range}; } std::pair map_indices(size_t length) { const auto range = map(g_indices, length, 4); return {ByteBuffer{g_indices.data() + range.offset, range.size}, range}; } std::pair map_uniform(size_t length) { const auto range = map(g_uniforms, length, g_cachedLimits.limits.minUniformBufferOffsetAlignment); return {ByteBuffer{g_uniforms.data() + range.offset, range.size}, range}; } std::pair map_storage(size_t length) { const auto range = map(g_storage, length, g_cachedLimits.limits.minStorageBufferOffsetAlignment); return {ByteBuffer{g_storage.data() + range.offset, range.size}, range}; } BindGroupRef bind_group_ref(const wgpu::BindGroupDescriptor& descriptor) { const auto id = xxh3_hash(descriptor); if (!g_cachedBindGroups.contains(id)) { g_cachedBindGroups.try_emplace(id, g_device.CreateBindGroup(&descriptor)); } return id; } const wgpu::BindGroup& find_bind_group(BindGroupRef id) { const auto it = g_cachedBindGroups.find(id); if (it == g_cachedBindGroups.end()) { Log.report(logvisor::Fatal, FMT_STRING("get_bind_group: failed to locate {}"), id); unreachable(); } return it->second; } const wgpu::Sampler& sampler_ref(const wgpu::SamplerDescriptor& descriptor) { const auto id = xxh3_hash(descriptor); auto it = g_cachedSamplers.find(id); if (it == g_cachedSamplers.end()) { it = g_cachedSamplers.try_emplace(id, g_device.CreateSampler(&descriptor)).first; } return it->second; } uint32_t align_uniform(uint32_t value) { return ALIGN(value, g_cachedLimits.limits.minUniformBufferOffsetAlignment); } void push_debug_group(zstring_view label) noexcept { #ifdef AURORA_GFX_DEBUG_GROUPS g_debugGroupStack.emplace_back(label); #endif } void pop_debug_group() noexcept { #ifdef AURORA_GFX_DEBUG_GROUPS g_debugGroupStack.pop_back(); #endif } } // namespace aurora::gfx