#include "ANIM.hpp"
#include "hecl/Blender/Connection.hpp"

namespace DataSpec::DNAMP2 {

using ANIMOutStream = hecl::blender::ANIMOutStream;

void ANIM::IANIM::sendANIMToBlender(hecl::blender::PyOutStream& os, const DNAANIM::RigInverter<CINF>& rig) const {
  os.format(fmt(
      "act.hecl_fps = round({})\n"
      "act.hecl_looping = {}\n"),
      (1.0f / mainInterval), looping ? "True" : "False");

  auto kit = chanKeys.begin();

  std::vector<zeus::CQuaternion> fixedRotKeys;
  std::vector<zeus::CVector3f> fixedTransKeys;

  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    const std::string* bName = rig.getCINF().getBoneNameFromId(bone.first);
    if (!bName) {
      if (std::get<0>(bone.second))
        ++kit;
      if (std::get<1>(bone.second))
        ++kit;
      if (std::get<2>(bone.second))
        ++kit;
      continue;
    }

    os.format(fmt("bone_string = '{}'\n"), *bName);
    os << "action_group = act.groups.new(bone_string)\n"
          "\n";

    if (std::get<0>(bone.second))
      os << "rotCurves = []\n"
            "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=0, "
            "action_group=bone_string))\n"
            "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=1, "
            "action_group=bone_string))\n"
            "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=2, "
            "action_group=bone_string))\n"
            "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=3, "
            "action_group=bone_string))\n"
            "\n";

    if (std::get<1>(bone.second))
      os << "transCurves = []\n"
            "transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=0, "
            "action_group=bone_string))\n"
            "transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=1, "
            "action_group=bone_string))\n"
            "transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=2, "
            "action_group=bone_string))\n"
            "\n";

    if (std::get<2>(bone.second))
      os << "scaleCurves = []\n"
            "scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=0, "
            "action_group=bone_string))\n"
            "scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=1, "
            "action_group=bone_string))\n"
            "scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=2, "
            "action_group=bone_string))\n"
            "\n";

    ANIMOutStream ao = os.beginANIMCurve();
    if (std::get<0>(bone.second)) {
      const std::vector<DNAANIM::Value>& rotKeys = *kit++;
      fixedRotKeys.clear();
      fixedRotKeys.resize(rotKeys.size());

      for (int c = 0; c < 4; ++c) {
        size_t idx = 0;
        for (const DNAANIM::Value& val : rotKeys)
          fixedRotKeys[idx++][c] = val.simd[c];
      }

      for (zeus::CQuaternion& rot : fixedRotKeys)
        rot = rig.invertRotation(bone.first, rot);

      for (int c = 0; c < 4; ++c) {
        auto frameit = frames.begin();
        ao.changeCurve(ANIMOutStream::CurveType::Rotate, c, rotKeys.size());
        for (const zeus::CQuaternion& val : fixedRotKeys)
          ao.write(*frameit++, val[c]);
      }
    }

    if (std::get<1>(bone.second)) {
      const std::vector<DNAANIM::Value>& transKeys = *kit++;
      fixedTransKeys.clear();
      fixedTransKeys.resize(transKeys.size());

      for (int c = 0; c < 3; ++c) {
        size_t idx = 0;
        for (const DNAANIM::Value& val : transKeys)
          fixedTransKeys[idx++][c] = val.simd[c];
      }

      for (zeus::CVector3f& t : fixedTransKeys)
        t = rig.invertPosition(bone.first, t, true);

      for (int c = 0; c < 3; ++c) {
        auto frameit = frames.begin();
        ao.changeCurve(ANIMOutStream::CurveType::Translate, c, fixedTransKeys.size());
        for (const zeus::CVector3f& val : fixedTransKeys)
          ao.write(*frameit++, val[c]);
      }
    }

    if (std::get<2>(bone.second)) {
      const std::vector<DNAANIM::Value>& scaleKeys = *kit++;
      for (int c = 0; c < 3; ++c) {
        auto frameit = frames.begin();
        ao.changeCurve(ANIMOutStream::CurveType::Scale, c, scaleKeys.size());
        for (const DNAANIM::Value& val : scaleKeys)
          ao.write(*frameit++, val.simd[c]);
      }
    }
  }
}

template <>
void ANIM::Enumerate<BigDNA::Read>(typename Read::StreamT& reader) {
  atUint32 version = reader.readUint32Big();
  switch (version) {
  case 0:
    m_anim = std::make_unique<ANIM0>();
    m_anim->read(reader);
    break;
  case 2:
    m_anim = std::make_unique<ANIM2>();
    m_anim->read(reader);
    break;
  default:
    Log.report(logvisor::Fatal, fmt("unrecognized ANIM version"));
    break;
  }
}

template <>
void ANIM::Enumerate<BigDNA::Write>(typename Write::StreamT& writer) {
  writer.writeUint32Big(m_anim->m_version);
  m_anim->write(writer);
}

template <>
void ANIM::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& s) {
  s += 4;
  m_anim->binarySize(s);
}

std::string_view ANIM::ANIM0::DNAType() { return "ANIM0"sv; }

template <>
void ANIM::ANIM0::Enumerate<BigDNA::Read>(typename Read::StreamT& reader) {
  Header head;
  head.read(reader);
  mainInterval = head.interval;

  frames.clear();
  frames.reserve(head.keyCount);
  for (size_t k = 0; k < head.keyCount; ++k)
    frames.push_back(k);

  std::map<atUint8, atUint32> boneMap;
  for (size_t b = 0; b < head.boneSlotCount; ++b) {
    atUint8 idx = reader.readUByte();
    if (idx == 0xff)
      continue;
    boneMap[idx] = b;
  }

  atUint32 boneCount = reader.readUint32Big();
  bones.clear();
  bones.reserve(boneCount);
  for (size_t b = 0; b < boneCount; ++b) {
    bones.emplace_back(boneMap[b], std::make_tuple(false, false, false));
    atUint8 idx = reader.readUByte();
    if (idx != 0xff)
      std::get<0>(bones.back().second) = true;
  }

  boneCount = reader.readUint32Big();
  for (size_t b = 0; b < boneCount; ++b) {
    atUint8 idx = reader.readUByte();
    if (idx != 0xff)
      std::get<1>(bones[b].second) = true;
  }

  boneCount = reader.readUint32Big();
  for (size_t b = 0; b < boneCount; ++b) {
    atUint8 idx = reader.readUByte();
    if (idx != 0xff)
      std::get<2>(bones[b].second) = true;
  }

  channels.clear();
  chanKeys.clear();
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    if (std::get<0>(bone.second)) {
      channels.emplace_back();
      DNAANIM::Channel& chan = channels.back();
      chan.type = DNAANIM::Channel::Type::Rotation;
      chanKeys.emplace_back();
    }
    if (std::get<1>(bone.second)) {
      channels.emplace_back();
      DNAANIM::Channel& chan = channels.back();
      chan.type = DNAANIM::Channel::Type::Translation;
      chanKeys.emplace_back();
    }
    if (std::get<2>(bone.second)) {
      channels.emplace_back();
      DNAANIM::Channel& chan = channels.back();
      chan.type = DNAANIM::Channel::Type::Scale;
      chanKeys.emplace_back();
    }
  }

  reader.readUint32Big();
  auto kit = chanKeys.begin();
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    if (std::get<0>(bone.second))
      ++kit;
    if (std::get<1>(bone.second))
      ++kit;
    if (std::get<2>(bone.second)) {
      std::vector<DNAANIM::Value>& keys = *kit++;
      for (size_t k = 0; k < head.keyCount; ++k)
        keys.emplace_back(reader.readVec3fBig());
    }
  }

  reader.readUint32Big();
  kit = chanKeys.begin();
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    if (std::get<0>(bone.second)) {
      std::vector<DNAANIM::Value>& keys = *kit++;
      for (size_t k = 0; k < head.keyCount; ++k)
        keys.emplace_back(reader.readVec4fBig());
    }
    if (std::get<1>(bone.second))
      ++kit;
    if (std::get<2>(bone.second))
      ++kit;
  }

  reader.readUint32Big();
  kit = chanKeys.begin();
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    if (std::get<0>(bone.second))
      ++kit;
    if (std::get<1>(bone.second)) {
      std::vector<DNAANIM::Value>& keys = *kit++;
      for (size_t k = 0; k < head.keyCount; ++k)
        keys.emplace_back(reader.readVec3fBig());
    }
    if (std::get<2>(bone.second))
      ++kit;
  }
}

template <>
void ANIM::ANIM0::Enumerate<BigDNA::Write>(typename Write::StreamT& writer) {
  Header head;
  head.unk0 = 0;
  head.unk1 = 0;
  head.unk2 = 0;
  head.keyCount = frames.size();
  head.duration = head.keyCount * mainInterval;
  head.interval = mainInterval;

  atUint32 maxId = 0;
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones)
    maxId = std::max(maxId, bone.first);
  head.boneSlotCount = maxId + 1;
  head.write(writer);

  for (size_t s = 0; s < head.boneSlotCount; ++s) {
    size_t boneIdx = 0;
    bool found = false;
    for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
      if (s == bone.first) {
        writer.writeUByte(boneIdx);
        found = true;
        break;
      }
      ++boneIdx;
    }
    if (!found)
      writer.writeUByte(0xff);
  }

  writer.writeUint32Big(bones.size());
  size_t boneIdx = 0;
  size_t rotKeyCount = 0;
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    if (std::get<0>(bone.second)) {
      writer.writeUByte(boneIdx);
      ++rotKeyCount;
    } else
      writer.writeUByte(0xff);
    ++boneIdx;
  }

  writer.writeUint32Big(bones.size());
  boneIdx = 0;
  size_t transKeyCount = 0;
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    if (std::get<1>(bone.second)) {
      writer.writeUByte(boneIdx);
      ++transKeyCount;
    } else
      writer.writeUByte(0xff);
    ++boneIdx;
  }

  writer.writeUint32Big(bones.size());
  boneIdx = 0;
  size_t scaleKeyCount = 0;
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    if (std::get<2>(bone.second)) {
      writer.writeUByte(boneIdx);
      ++scaleKeyCount;
    } else
      writer.writeUByte(0xff);
    ++boneIdx;
  }

  writer.writeUint32Big(scaleKeyCount * head.keyCount);
  auto cit = chanKeys.begin();
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    if (std::get<0>(bone.second))
      ++cit;
    if (std::get<1>(bone.second))
      ++cit;
    if (std::get<2>(bone.second)) {
      const std::vector<DNAANIM::Value>& keys = *cit++;
      auto kit = keys.begin();
      for (size_t k = 0; k < head.keyCount; ++k)
        writer.writeVec3fBig(atVec3f{(*kit++).simd});
    }
  }

  writer.writeUint32Big(rotKeyCount * head.keyCount);
  cit = chanKeys.begin();
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    if (std::get<0>(bone.second)) {
      const std::vector<DNAANIM::Value>& keys = *cit++;
      auto kit = keys.begin();
      for (size_t k = 0; k < head.keyCount; ++k)
        writer.writeVec4fBig(atVec4f{(*kit++).simd});
    }
    if (std::get<1>(bone.second))
      ++cit;
    if (std::get<2>(bone.second))
      ++cit;
  }

  writer.writeUint32Big(transKeyCount * head.keyCount);
  cit = chanKeys.begin();
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    if (std::get<0>(bone.second))
      ++cit;
    if (std::get<1>(bone.second)) {
      const std::vector<DNAANIM::Value>& keys = *cit++;
      auto kit = keys.begin();
      for (size_t k = 0; k < head.keyCount; ++k)
        writer.writeVec3fBig(atVec3f{(*kit++).simd});
    }
    if (std::get<2>(bone.second))
      ++cit;
  }
}

template <>
void ANIM::ANIM0::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& s) {
  Header head;

  atUint32 maxId = 0;
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones)
    maxId = std::max(maxId, bone.first);

  head.binarySize(s);
  s += maxId + 1;
  s += bones.size() * 3 + 12;

  s += 12;
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    if (std::get<0>(bone.second))
      s += head.keyCount * 16;
    if (std::get<1>(bone.second))
      s += head.keyCount * 12;
    if (std::get<2>(bone.second))
      s += head.keyCount * 12;
  }
}

std::string_view ANIM::ANIM2::DNAType() { return "ANIM2"sv; }

template <>
void ANIM::ANIM2::Enumerate<BigDNA::Read>(typename Read::StreamT& reader) {
  Header head;
  head.read(reader);
  mainInterval = head.interval;
  looping = bool(head.looping);

  WordBitmap keyBmp;
  keyBmp.read(reader, head.keyBitmapBitCount);
  frames.clear();
  atUint32 frameAccum = 0;
  for (bool bit : keyBmp) {
    if (bit)
      frames.push_back(frameAccum);
    ++frameAccum;
  }
  reader.seek(4);

  bones.clear();
  bones.reserve(head.boneChannelCount);
  channels.clear();
  channels.reserve(head.boneChannelCount);
  atUint16 keyframeCount = 0;
  for (size_t b = 0; b < head.boneChannelCount; ++b) {
    ChannelDesc desc;
    desc.read(reader);
    bones.emplace_back(desc.id, std::make_tuple(desc.keyCount1 != 0, desc.keyCount2 != 0, desc.keyCount3 != 0));

    if (desc.keyCount1) {
      channels.emplace_back();
      DNAANIM::Channel& chan = channels.back();
      chan.type = DNAANIM::Channel::Type::Rotation;
      chan.i[0] = desc.initRX;
      chan.q[0] = desc.qRX;
      chan.i[1] = desc.initRY;
      chan.q[1] = desc.qRY;
      chan.i[2] = desc.initRZ;
      chan.q[2] = desc.qRZ;
    }
    keyframeCount = std::max(keyframeCount, desc.keyCount1);

    if (desc.keyCount2) {
      channels.emplace_back();
      DNAANIM::Channel& chan = channels.back();
      chan.type = DNAANIM::Channel::Type::Translation;
      chan.i[0] = desc.initTX;
      chan.q[0] = desc.qTX;
      chan.i[1] = desc.initTY;
      chan.q[1] = desc.qTY;
      chan.i[2] = desc.initTZ;
      chan.q[2] = desc.qTZ;
    }
    keyframeCount = std::max(keyframeCount, desc.keyCount2);

    if (desc.keyCount3) {
      channels.emplace_back();
      DNAANIM::Channel& chan = channels.back();
      chan.type = DNAANIM::Channel::Type::Scale;
      chan.i[0] = desc.initSX;
      chan.q[0] = desc.qSX;
      chan.i[1] = desc.initSY;
      chan.q[1] = desc.qSY;
      chan.i[2] = desc.initSZ;
      chan.q[2] = desc.qSZ;
    }
    keyframeCount = std::max(keyframeCount, desc.keyCount3);
  }

  size_t bsSize = DNAANIM::ComputeBitstreamSize(keyframeCount, channels);
  std::unique_ptr<atUint8[]> bsData = reader.readUBytes(bsSize);
  DNAANIM::BitstreamReader bsReader;
  chanKeys = bsReader.read(bsData.get(), keyframeCount, channels, head.rotDiv, head.translationMult, head.scaleMult);
}

template <>
void ANIM::ANIM2::Enumerate<BigDNA::Write>(typename Write::StreamT& writer) {
  /* TODO: conform to MP1 ANIM3 */
  Header head;
  head.unk1 = 1;
  head.looping = looping;
  head.interval = mainInterval;
  head.rootBoneId = 0;
  head.scaleMult = 0.f;

  WordBitmap keyBmp;
  size_t frameCount = 0;
  for (atUint32 frame : frames) {
    while (keyBmp.getBit(frame))
      ++frame;
    keyBmp.setBit(frame);
    frameCount = frame + 1;
  }
  head.keyBitmapBitCount = keyBmp.getBitCount();
  head.duration = frameCount * mainInterval;
  head.boneChannelCount = bones.size();

  size_t keyframeCount = frames.size();
  std::vector<DNAANIM::Channel> qChannels = channels;
  DNAANIM::BitstreamWriter bsWriter;
  size_t bsSize;
  std::unique_ptr<atUint8[]> bsData =
      bsWriter.write(chanKeys, keyframeCount, qChannels, m_version == 3 ? 0x7fffff : 0x7fff, head.rotDiv,
                     head.translationMult, head.scaleMult, bsSize);

  /* TODO: Figure out proper scratch size computation */
  head.scratchSize = keyframeCount * channels.size() * 16;

  head.write(writer);
  keyBmp.write(writer);
  writer.writeUint32Big(head.boneChannelCount);
  auto cit = qChannels.begin();
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    ChannelDesc desc;
    if (std::get<0>(bone.second)) {
      DNAANIM::Channel& chan = *cit++;
      desc.keyCount1 = keyframeCount;
      desc.initRX = chan.i[0];
      desc.qRX = chan.q[0];
      desc.initRY = chan.i[1];
      desc.qRY = chan.q[1];
      desc.initRZ = chan.i[2];
      desc.qRZ = chan.q[2];
    }
    if (std::get<1>(bone.second)) {
      DNAANIM::Channel& chan = *cit++;
      desc.keyCount2 = keyframeCount;
      desc.initTX = chan.i[0];
      desc.qTX = chan.q[0];
      desc.initTY = chan.i[1];
      desc.qTY = chan.q[1];
      desc.initTZ = chan.i[2];
      desc.qTZ = chan.q[2];
    }
    if (std::get<2>(bone.second)) {
      DNAANIM::Channel& chan = *cit++;
      desc.keyCount3 = keyframeCount;
      desc.initSX = chan.i[0];
      desc.qSX = chan.q[0];
      desc.initSY = chan.i[1];
      desc.qSY = chan.q[1];
      desc.initSZ = chan.i[2];
      desc.qSZ = chan.q[2];
    }
  }

  writer.writeUBytes(bsData.get(), bsSize);
}

template <>
void ANIM::ANIM2::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& s) {
  Header head;

  WordBitmap keyBmp;
  for (atUint32 frame : frames) {
    while (keyBmp.getBit(frame))
      ++frame;
    keyBmp.setBit(frame);
  }

  head.binarySize(s);
  keyBmp.binarySize(s);
  s += 4;
  for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
    s += 7;
    if (std::get<0>(bone.second))
      s += 9;
    if (std::get<1>(bone.second))
      s += 9;
    if (std::get<2>(bone.second))
      s += 9;
  }

  s += DNAANIM::ComputeBitstreamSize(frames.size(), channels);
}

} // namespace DataSpec::DNAMP2