// __ __ _ ______ _____ // | \/ | (_) | ____| / ____|_ _ // | \ / | __ _ __ _ _ ___ | |__ _ __ _ _ _ __ ___ | | _| |_ _| |_ // | |\/| |/ _` |/ _` | |/ __| | __| | '_ \| | | | '_ ` _ \ | | |_ _|_ _| // | | | | (_| | (_| | | (__ | |____| | | | |_| | | | | | | | |____|_| |_| // |_| |_|\__,_|\__, |_|\___| |______|_| |_|\__,_|_| |_| |_| \_____| // __/ | https://github.com/Neargye/magic_enum // |___/ version 0.7.2 // // Licensed under the MIT License <http://opensource.org/licenses/MIT>. // SPDX-License-Identifier: MIT // Copyright (c) 2019 - 2021 Daniil Goncharov <neargye@gmail.com>. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #ifndef NEARGYE_MAGIC_ENUM_HPP #define NEARGYE_MAGIC_ENUM_HPP #define MAGIC_ENUM_VERSION_MAJOR 0 #define MAGIC_ENUM_VERSION_MINOR 7 #define MAGIC_ENUM_VERSION_PATCH 2 #include <array> #include <cassert> #include <cstdint> #include <cstddef> #include <iosfwd> #include <limits> #include <type_traits> #include <utility> #if !defined(MAGIC_ENUM_USING_ALIAS_OPTIONAL) #include <optional> #endif #if !defined(MAGIC_ENUM_USING_ALIAS_STRING) #include <string> #endif #if !defined(MAGIC_ENUM_USING_ALIAS_STRING_VIEW) #include <string_view> #endif #if defined(__clang__) # pragma clang diagnostic push #elif defined(__GNUC__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wmaybe-uninitialized" // May be used uninitialized 'return {};'. #elif defined(_MSC_VER) # pragma warning(push) # pragma warning(disable : 26495) // Variable 'static_string<N>::chars_' is uninitialized. # pragma warning(disable : 28020) // Arithmetic overflow: Using operator '-' on a 4 byte value and then casting the result to a 8 byte value. # pragma warning(disable : 26451) // The expression '0<=_Param_(1)&&_Param_(1)<=1-1' is not true at this call. #endif // Checks magic_enum compiler compatibility. #if defined(__clang__) && __clang_major__ >= 5 || defined(__GNUC__) && __GNUC__ >= 9 || defined(_MSC_VER) && _MSC_VER >= 1910 # undef MAGIC_ENUM_SUPPORTED # define MAGIC_ENUM_SUPPORTED 1 #endif // Checks magic_enum compiler aliases compatibility. #if defined(__clang__) && __clang_major__ >= 5 || defined(__GNUC__) && __GNUC__ >= 9 || defined(_MSC_VER) && _MSC_VER >= 1920 # undef MAGIC_ENUM_SUPPORTED_ALIASES # define MAGIC_ENUM_SUPPORTED_ALIASES 1 #endif // Enum value must be greater or equals than MAGIC_ENUM_RANGE_MIN. By default MAGIC_ENUM_RANGE_MIN = -128. // If need another min range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MIN. #if !defined(MAGIC_ENUM_RANGE_MIN) # define MAGIC_ENUM_RANGE_MIN -128 #endif // Enum value must be less or equals than MAGIC_ENUM_RANGE_MAX. By default MAGIC_ENUM_RANGE_MAX = 128. // If need another max range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MAX. #if !defined(MAGIC_ENUM_RANGE_MAX) # define MAGIC_ENUM_RANGE_MAX 128 #endif namespace magic_enum { // If need another optional type, define the macro MAGIC_ENUM_USING_ALIAS_OPTIONAL. #if defined(MAGIC_ENUM_USING_ALIAS_OPTIONAL) MAGIC_ENUM_USING_ALIAS_OPTIONAL #else using std::optional; #endif // If need another string_view type, define the macro MAGIC_ENUM_USING_ALIAS_STRING_VIEW. #if defined(MAGIC_ENUM_USING_ALIAS_STRING_VIEW) MAGIC_ENUM_USING_ALIAS_STRING_VIEW #else using std::string_view; #endif // If need another string type, define the macro MAGIC_ENUM_USING_ALIAS_STRING. #if defined(MAGIC_ENUM_USING_ALIAS_STRING) MAGIC_ENUM_USING_ALIAS_STRING #else using std::string; #endif namespace customize { // Enum value must be in range [MAGIC_ENUM_RANGE_MIN, MAGIC_ENUM_RANGE_MAX]. By default MAGIC_ENUM_RANGE_MIN = -128, MAGIC_ENUM_RANGE_MAX = 128. // If need another range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MIN and MAGIC_ENUM_RANGE_MAX. // If need another range for specific enum type, add specialization enum_range for necessary enum type. template <typename E> struct enum_range { static_assert(std::is_enum_v<E>, "magic_enum::customize::enum_range requires enum type."); inline static constexpr int min = MAGIC_ENUM_RANGE_MIN; inline static constexpr int max = MAGIC_ENUM_RANGE_MAX; static_assert(max > min, "magic_enum::customize::enum_range requires max > min."); }; static_assert(MAGIC_ENUM_RANGE_MIN <= 0, "MAGIC_ENUM_RANGE_MIN must be less or equals than 0."); static_assert(MAGIC_ENUM_RANGE_MIN > (std::numeric_limits<std::int16_t>::min)(), "MAGIC_ENUM_RANGE_MIN must be greater than INT16_MIN."); static_assert(MAGIC_ENUM_RANGE_MAX > 0, "MAGIC_ENUM_RANGE_MAX must be greater than 0."); static_assert(MAGIC_ENUM_RANGE_MAX < (std::numeric_limits<std::int16_t>::max)(), "MAGIC_ENUM_RANGE_MAX must be less than INT16_MAX."); static_assert(MAGIC_ENUM_RANGE_MAX > MAGIC_ENUM_RANGE_MIN, "MAGIC_ENUM_RANGE_MAX must be greater than MAGIC_ENUM_RANGE_MIN."); // If need custom names for enum, add specialization enum_name for necessary enum type. template <typename E> constexpr string_view enum_name(E) noexcept { static_assert(std::is_enum_v<E>, "magic_enum::customize::enum_name requires enum type."); return {}; } } // namespace magic_enum::customize namespace detail { template <typename T> struct supported #if defined(MAGIC_ENUM_SUPPORTED) && MAGIC_ENUM_SUPPORTED || defined(MAGIC_ENUM_NO_CHECK_SUPPORT) : std::true_type {}; #else : std::false_type {}; #endif struct char_equal_to { constexpr bool operator()(char lhs, char rhs) const noexcept { return lhs == rhs; } }; template <std::size_t N> class static_string { public: constexpr explicit static_string(string_view str) noexcept : static_string{str, std::make_index_sequence<N>{}} { assert(str.size() == N); } constexpr const char* data() const noexcept { return chars_; } constexpr std::size_t size() const noexcept { return N; } constexpr operator string_view() const noexcept { return {data(), size()}; } private: template <std::size_t... I> constexpr static_string(string_view str, std::index_sequence<I...>) noexcept : chars_{str[I]..., '\0'} {} char chars_[N + 1]; }; template <> class static_string<0> { public: constexpr explicit static_string(string_view) noexcept {} constexpr const char* data() const noexcept { return nullptr; } constexpr std::size_t size() const noexcept { return 0; } constexpr operator string_view() const noexcept { return {}; } }; constexpr string_view pretty_name(string_view name) noexcept { for (std::size_t i = name.size(); i > 0; --i) { if (!((name[i - 1] >= '0' && name[i - 1] <= '9') || (name[i - 1] >= 'a' && name[i - 1] <= 'z') || (name[i - 1] >= 'A' && name[i - 1] <= 'Z') || (name[i - 1] == '_'))) { name.remove_prefix(i); break; } } if (name.size() > 0 && ((name.front() >= 'a' && name.front() <= 'z') || (name.front() >= 'A' && name.front() <= 'Z') || (name.front() == '_'))) { return name; } return {}; // Invalid name. } constexpr std::size_t find(string_view str, char c) noexcept { #if defined(__clang__) && __clang_major__ < 9 && defined(__GLIBCXX__) || defined(_MSC_VER) && _MSC_VER < 1920 && !defined(__clang__) // https://stackoverflow.com/questions/56484834/constexpr-stdstring-viewfind-last-of-doesnt-work-on-clang-8-with-libstdc // https://developercommunity.visualstudio.com/content/problem/360432/vs20178-regression-c-failed-in-test.html constexpr bool workaround = true; #else constexpr bool workaround = false; #endif if constexpr (workaround) { for (std::size_t i = 0; i < str.size(); ++i) { if (str[i] == c) { return i; } } return string_view::npos; } else { return str.find_first_of(c); } } template <typename T, std::size_t N, std::size_t... I> constexpr std::array<std::remove_cv_t<T>, N> to_array(T (&a)[N], std::index_sequence<I...>) { return {{a[I]...}}; } template <typename BinaryPredicate> constexpr bool cmp_equal(string_view lhs, string_view rhs, BinaryPredicate&& p) noexcept(std::is_nothrow_invocable_r_v<bool, BinaryPredicate, char, char>) { #if defined(_MSC_VER) && _MSC_VER < 1920 && !defined(__clang__) // https://developercommunity.visualstudio.com/content/problem/360432/vs20178-regression-c-failed-in-test.html // https://developercommunity.visualstudio.com/content/problem/232218/c-constexpr-string-view.html constexpr bool workaround = true; #else constexpr bool workaround = false; #endif constexpr bool default_predicate = std::is_same_v<std::decay_t<BinaryPredicate>, char_equal_to>; if constexpr (default_predicate && !workaround) { static_cast<void>(p); return lhs == rhs; } else { if (lhs.size() != rhs.size()) { return false; } const auto size = lhs.size(); for (std::size_t i = 0; i < size; ++i) { if (!p(lhs[i], rhs[i])) { return false; } } return true; } } template <typename L, typename R> constexpr bool cmp_less(L lhs, R rhs) noexcept { static_assert(std::is_integral_v<L> && std::is_integral_v<R>, "magic_enum::detail::cmp_less requires integral type."); if constexpr (std::is_signed_v<L> == std::is_signed_v<R>) { // If same signedness (both signed or both unsigned). return lhs < rhs; } else if constexpr (std::is_signed_v<R>) { // If 'right' is negative, then result is 'false', otherwise cast & compare. return rhs > 0 && lhs < static_cast<std::make_unsigned_t<R>>(rhs); } else { // If 'left' is negative, then result is 'true', otherwise cast & compare. return lhs < 0 || static_cast<std::make_unsigned_t<L>>(lhs) < rhs; } } template <typename I> constexpr I log2(I value) noexcept { static_assert(std::is_integral_v<I>, "magic_enum::detail::log2 requires integral type."); auto ret = I{0}; for (; value > I{1}; value >>= I{1}, ++ret) {} return ret; } template <typename I> constexpr bool is_pow2(I x) noexcept { static_assert(std::is_integral_v<I>, "magic_enum::detail::is_pow2 requires integral type."); return x != 0 && (x & (x - 1)) == 0; } template <typename T> inline constexpr bool is_enum_v = std::is_enum_v<T> && std::is_same_v<T, std::decay_t<T>>; template <typename E> constexpr auto n() noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::n requires enum type."); #if defined(MAGIC_ENUM_SUPPORTED) && MAGIC_ENUM_SUPPORTED # if defined(__clang__) constexpr string_view name{__PRETTY_FUNCTION__ + 34, sizeof(__PRETTY_FUNCTION__) - 36}; # elif defined(__GNUC__) constexpr string_view name{__PRETTY_FUNCTION__ + 49, sizeof(__PRETTY_FUNCTION__) - 51}; # elif defined(_MSC_VER) constexpr string_view name{__FUNCSIG__ + 40, sizeof(__FUNCSIG__) - 57}; # endif return static_string<name.size()>{name}; #else return string_view{}; // Unsupported compiler. #endif } template <typename E> inline constexpr auto type_name_v = n<E>(); template <typename E, E V> constexpr auto n() noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::n requires enum type."); constexpr auto custom_name = customize::enum_name<E>(V); if constexpr (custom_name.empty()) { static_cast<void>(custom_name); #if defined(MAGIC_ENUM_SUPPORTED) && MAGIC_ENUM_SUPPORTED # if defined(__clang__) || defined(__GNUC__) constexpr auto name = pretty_name({__PRETTY_FUNCTION__, sizeof(__PRETTY_FUNCTION__) - 2}); # elif defined(_MSC_VER) constexpr auto name = pretty_name({__FUNCSIG__, sizeof(__FUNCSIG__) - 17}); # endif return static_string<name.size()>{name}; #else return string_view{}; // Unsupported compiler. #endif } else { return static_string<custom_name.size()>{custom_name}; } } template <typename E, E V> inline constexpr auto enum_name_v = n<E, V>(); template <typename E, auto V> constexpr bool is_valid() noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::is_valid requires enum type."); return n<E, static_cast<E>(V)>().size() != 0; } template <typename E, int O, bool IsFlags = false, typename U = std::underlying_type_t<E>> constexpr E value(std::size_t i) noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::value requires enum type."); if constexpr (IsFlags) { return static_cast<E>(U{1} << static_cast<U>(static_cast<int>(i) + O)); } else { return static_cast<E>(static_cast<int>(i) + O); } } template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>> constexpr int reflected_min() noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::reflected_min requires enum type."); if constexpr (IsFlags) { return 0; } else { constexpr auto lhs = customize::enum_range<E>::min; static_assert(lhs > (std::numeric_limits<std::int16_t>::min)(), "magic_enum::enum_range requires min must be greater than INT16_MIN."); constexpr auto rhs = (std::numeric_limits<U>::min)(); if constexpr (cmp_less(lhs, rhs)) { return rhs; } else { static_assert(!is_valid<E, value<E, lhs - 1, IsFlags>(0)>(), "magic_enum::enum_range detects enum value smaller than min range size."); return lhs; } } } template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>> constexpr int reflected_max() noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::reflected_max requires enum type."); if constexpr (IsFlags) { return std::numeric_limits<U>::digits - 1; } else { constexpr auto lhs = customize::enum_range<E>::max; static_assert(lhs < (std::numeric_limits<std::int16_t>::max)(), "magic_enum::enum_range requires max must be less than INT16_MAX."); constexpr auto rhs = (std::numeric_limits<U>::max)(); if constexpr (cmp_less(lhs, rhs)) { static_assert(!is_valid<E, value<E, lhs + 1, IsFlags>(0)>(), "magic_enum::enum_range detects enum value larger than max range size."); return lhs; } else { return rhs; } } } template <typename E, bool IsFlags = false> inline constexpr auto reflected_min_v = reflected_min<E, IsFlags>(); template <typename E, bool IsFlags = false> inline constexpr auto reflected_max_v = reflected_max<E, IsFlags>(); template <std::size_t N> constexpr std::size_t values_count(const bool (&valid)[N]) noexcept { auto count = std::size_t{0}; for (std::size_t i = 0; i < N; ++i) { if (valid[i]) { ++count; } } return count; } template <typename E, bool IsFlags, int Min, std::size_t... I> constexpr auto values(std::index_sequence<I...>) noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::values requires enum type."); constexpr bool valid[sizeof...(I)] = {is_valid<E, value<E, Min, IsFlags>(I)>()...}; constexpr std::size_t count = values_count(valid); if constexpr (count > 0) { E values[count] = {}; for (std::size_t i = 0, v = 0; v < count; ++i) { if (valid[i]) { values[v++] = value<E, Min, IsFlags>(i); } } return to_array(values, std::make_index_sequence<count>{}); } else { return std::array<E, 0>{}; } } template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>> constexpr auto values() noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::values requires enum type."); constexpr auto min = reflected_min_v<E, IsFlags>; constexpr auto max = reflected_max_v<E, IsFlags>; constexpr auto range_size = max - min + 1; static_assert(range_size > 0, "magic_enum::enum_range requires valid size."); static_assert(range_size < (std::numeric_limits<std::uint16_t>::max)(), "magic_enum::enum_range requires valid size."); return values<E, IsFlags, reflected_min_v<E, IsFlags>>(std::make_index_sequence<range_size>{}); } template <typename E, bool IsFlags = false> inline constexpr auto values_v = values<E, IsFlags>(); template <typename E, bool IsFlags = false, typename D = std::decay_t<E>> using values_t = decltype((values_v<D, IsFlags>)); template <typename E, bool IsFlags = false> inline constexpr auto count_v = values_v<E, IsFlags>.size(); template <typename E, bool IsFlags = false, typename U = std::underlying_type_t<E>> inline constexpr auto min_v = (count_v<E, IsFlags> > 0) ? static_cast<U>(values_v<E, IsFlags>.front()) : U{0}; template <typename E, bool IsFlags = false, typename U = std::underlying_type_t<E>> inline constexpr auto max_v = (count_v<E, IsFlags> > 0) ? static_cast<U>(values_v<E, IsFlags>.back()) : U{0}; template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>> constexpr std::size_t range_size() noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::range_size requires enum type."); constexpr auto max = IsFlags ? log2(max_v<E, IsFlags>) : max_v<E, IsFlags>; constexpr auto min = IsFlags ? log2(min_v<E, IsFlags>) : min_v<E, IsFlags>; constexpr auto range_size = max - min + U{1}; static_assert(range_size > 0, "magic_enum::enum_range requires valid size."); static_assert(range_size < (std::numeric_limits<std::uint16_t>::max)(), "magic_enum::enum_range requires valid size."); return static_cast<std::size_t>(range_size); } template <typename E, bool IsFlags = false> inline constexpr auto range_size_v = range_size<E, IsFlags>(); template <typename E, bool IsFlags = false> using index_t = std::conditional_t<range_size_v<E, IsFlags> < (std::numeric_limits<std::uint8_t>::max)(), std::uint8_t, std::uint16_t>; template <typename E, bool IsFlags = false> inline constexpr auto invalid_index_v = (std::numeric_limits<index_t<E, IsFlags>>::max)(); template <typename E, bool IsFlags, std::size_t... I> constexpr auto indexes(std::index_sequence<I...>) noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::indexes requires enum type."); constexpr auto min = IsFlags ? log2(min_v<E, IsFlags>) : min_v<E, IsFlags>; [[maybe_unused]] auto i = index_t<E, IsFlags>{0}; return std::array<decltype(i), sizeof...(I)>{{(is_valid<E, value<E, min, IsFlags>(I)>() ? i++ : invalid_index_v<E, IsFlags>)...}}; } template <typename E, bool IsFlags = false> inline constexpr auto indexes_v = indexes<E, IsFlags>(std::make_index_sequence<range_size_v<E, IsFlags>>{}); template <typename E, bool IsFlags, std::size_t... I> constexpr auto names(std::index_sequence<I...>) noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::names requires enum type."); return std::array<string_view, sizeof...(I)>{{enum_name_v<E, values_v<E, IsFlags>[I]>...}}; } template <typename E, bool IsFlags = false> inline constexpr auto names_v = names<E, IsFlags>(std::make_index_sequence<count_v<E, IsFlags>>{}); template <typename E, bool IsFlags = false, typename D = std::decay_t<E>> using names_t = decltype((names_v<D, IsFlags>)); template <typename E, bool IsFlags, std::size_t... I> constexpr auto entries(std::index_sequence<I...>) noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::entries requires enum type."); return std::array<std::pair<E, string_view>, sizeof...(I)>{{{values_v<E, IsFlags>[I], enum_name_v<E, values_v<E, IsFlags>[I]>}...}}; } template <typename E, bool IsFlags = false> inline constexpr auto entries_v = entries<E, IsFlags>(std::make_index_sequence<count_v<E, IsFlags>>{}); template <typename E, bool IsFlags = false, typename D = std::decay_t<E>> using entries_t = decltype((entries_v<D, IsFlags>)); template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>> constexpr bool is_sparse() noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::is_sparse requires enum type."); return range_size_v<E, IsFlags> != count_v<E, IsFlags>; } template <typename E, bool IsFlags = false> inline constexpr bool is_sparse_v = is_sparse<E, IsFlags>(); template <typename E, typename U = std::underlying_type_t<E>> constexpr std::size_t undex(U value) noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::undex requires enum type."); if (const auto i = static_cast<std::size_t>(value - min_v<E>); value >= min_v<E> && value <= max_v<E>) { if constexpr (is_sparse_v<E>) { if (const auto idx = indexes_v<E>[i]; idx != invalid_index_v<E>) { return idx; } } else { return i; } } return invalid_index_v<E>; // Value out of range. } template <typename E, typename U = std::underlying_type_t<E>> constexpr std::size_t endex(E value) noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::endex requires enum type."); return undex<E>(static_cast<U>(value)); } template <typename E, typename U = std::underlying_type_t<E>> constexpr U value_ors() noexcept { static_assert(is_enum_v<E>, "magic_enum::detail::endex requires enum type."); auto value = U{0}; for (std::size_t i = 0; i < count_v<E, true>; ++i) { value |= static_cast<U>(values_v<E, true>[i]); } return value; } template <bool, typename T, typename R> struct enable_if_enum {}; template <typename T, typename R> struct enable_if_enum<true, T, R> { using type = R; using D = std::decay_t<T>; static_assert(supported<D>::value, "magic_enum unsupported compiler (https://github.com/Neargye/magic_enum#compiler-compatibility)."); }; template <typename T, typename R = void> using enable_if_enum_t = std::enable_if_t<std::is_enum_v<std::decay_t<T>>, R>; template <typename T, typename Enable = std::enable_if_t<std::is_enum_v<std::decay_t<T>>>> using enum_concept = T; template <typename T, bool = std::is_enum_v<T>> struct is_scoped_enum : std::false_type {}; template <typename T> struct is_scoped_enum<T, true> : std::bool_constant<!std::is_convertible_v<T, std::underlying_type_t<T>>> {}; template <typename T, bool = std::is_enum_v<T>> struct is_unscoped_enum : std::false_type {}; template <typename T> struct is_unscoped_enum<T, true> : std::bool_constant<std::is_convertible_v<T, std::underlying_type_t<T>>> {}; template <typename T, bool = std::is_enum_v<std::decay_t<T>>> struct underlying_type {}; template <typename T> struct underlying_type<T, true> : std::underlying_type<std::decay_t<T>> {}; } // namespace magic_enum::detail // Checks is magic_enum supported compiler. inline constexpr bool is_magic_enum_supported = detail::supported<void>::value; template <typename T> using Enum = detail::enum_concept<T>; // Checks whether T is an Unscoped enumeration type. // Provides the member constant value which is equal to true, if T is an [Unscoped enumeration](https://en.cppreference.com/w/cpp/language/enum#Unscoped_enumeration) type. Otherwise, value is equal to false. template <typename T> struct is_unscoped_enum : detail::is_unscoped_enum<T> {}; template <typename T> inline constexpr bool is_unscoped_enum_v = is_unscoped_enum<T>::value; // Checks whether T is an Scoped enumeration type. // Provides the member constant value which is equal to true, if T is an [Scoped enumeration](https://en.cppreference.com/w/cpp/language/enum#Scoped_enumerations) type. Otherwise, value is equal to false. template <typename T> struct is_scoped_enum : detail::is_scoped_enum<T> {}; template <typename T> inline constexpr bool is_scoped_enum_v = is_scoped_enum<T>::value; // If T is a complete enumeration type, provides a member typedef type that names the underlying type of T. // Otherwise, if T is not an enumeration type, there is no member type. Otherwise (T is an incomplete enumeration type), the program is ill-formed. template <typename T> struct underlying_type : detail::underlying_type<T> {}; template <typename T> using underlying_type_t = typename underlying_type<T>::type; // Returns type name of enum. template <typename E> [[nodiscard]] constexpr auto enum_type_name() noexcept -> detail::enable_if_enum_t<E, string_view> { using D = std::decay_t<E>; constexpr string_view name = detail::type_name_v<D>; static_assert(name.size() > 0, "Enum type does not have a name."); return name; } // Returns number of enum values. template <typename E> [[nodiscard]] constexpr auto enum_count() noexcept -> detail::enable_if_enum_t<E, std::size_t> { using D = std::decay_t<E>; return detail::count_v<D>; } // Returns enum value at specified index. // No bounds checking is performed: the behavior is undefined if index >= number of enum values. template <typename E> [[nodiscard]] constexpr auto enum_value(std::size_t index) noexcept -> detail::enable_if_enum_t<E, std::decay_t<E>> { using D = std::decay_t<E>; static_assert(detail::count_v<D> > 0, "magic_enum requires enum implementation and valid max and min."); if constexpr (detail::is_sparse_v<D>) { return assert((index < detail::count_v<D>)), detail::values_v<D>[index]; } else { return assert((index < detail::count_v<D>)), detail::value<D, detail::min_v<D>>(index); } } // Returns std::array with enum values, sorted by enum value. template <typename E> [[nodiscard]] constexpr auto enum_values() noexcept -> detail::enable_if_enum_t<E, detail::values_t<E>> { using D = std::decay_t<E>; static_assert(detail::count_v<D> > 0, "magic_enum requires enum implementation and valid max and min."); return detail::values_v<D>; } // Returns name from static storage enum variable. // This version is much lighter on the compile times and is not restricted to the enum_range limitation. template <auto V> [[nodiscard]] constexpr auto enum_name() noexcept -> detail::enable_if_enum_t<decltype(V), string_view> { using D = std::decay_t<decltype(V)>; constexpr string_view name = detail::enum_name_v<D, V>; static_assert(name.size() > 0, "Enum value does not have a name."); return name; } // Returns name from enum value. // If enum value does not have name or value out of range, returns empty string. template <typename E> [[nodiscard]] constexpr auto enum_name(E value) noexcept -> detail::enable_if_enum_t<E, string_view> { using D = std::decay_t<E>; if (const auto i = detail::endex<D>(value); i != detail::invalid_index_v<D>) { return detail::names_v<D>[i]; } return {}; // Invalid value or out of range. } // Returns std::array with names, sorted by enum value. template <typename E> [[nodiscard]] constexpr auto enum_names() noexcept -> detail::enable_if_enum_t<E, detail::names_t<E>> { using D = std::decay_t<E>; static_assert(detail::count_v<D> > 0, "magic_enum requires enum implementation and valid max and min."); return detail::names_v<D>; } // Returns std::array with pairs (value, name), sorted by enum value. template <typename E> [[nodiscard]] constexpr auto enum_entries() noexcept -> detail::enable_if_enum_t<E, detail::entries_t<E>> { using D = std::decay_t<E>; static_assert(detail::count_v<D> > 0, "magic_enum requires enum implementation and valid max and min."); return detail::entries_v<D>; } // Obtains enum value from integer value. // Returns optional with enum value. template <typename E> [[nodiscard]] constexpr auto enum_cast(underlying_type_t<E> value) noexcept -> detail::enable_if_enum_t<E, optional<std::decay_t<E>>> { using D = std::decay_t<E>; if (detail::undex<D>(value) != detail::invalid_index_v<D>) { return static_cast<D>(value); } return {}; // Invalid value or out of range. } // Obtains enum value from name. // Returns optional with enum value. template <typename E, typename BinaryPredicate> [[nodiscard]] constexpr auto enum_cast(string_view value, BinaryPredicate p) noexcept(std::is_nothrow_invocable_r_v<bool, BinaryPredicate, char, char>) -> detail::enable_if_enum_t<E, optional<std::decay_t<E>>> { static_assert(std::is_invocable_r_v<bool, BinaryPredicate, char, char>, "magic_enum::enum_cast requires bool(char, char) invocable predicate."); using D = std::decay_t<E>; for (std::size_t i = 0; i < detail::count_v<D>; ++i) { if (detail::cmp_equal(value, detail::names_v<D>[i], p)) { return enum_value<D>(i); } } return {}; // Invalid value or out of range. } // Obtains enum value from name. // Returns optional with enum value. template <typename E> [[nodiscard]] constexpr auto enum_cast(string_view value) noexcept -> detail::enable_if_enum_t<E, optional<std::decay_t<E>>> { using D = std::decay_t<E>; return enum_cast<D>(value, detail::char_equal_to{}); } // Returns integer value from enum value. template <typename E> [[nodiscard]] constexpr auto enum_integer(E value) noexcept -> detail::enable_if_enum_t<E, underlying_type_t<E>> { return static_cast<underlying_type_t<E>>(value); } // Obtains index in enum values from enum value. // Returns optional with index. template <typename E> [[nodiscard]] constexpr auto enum_index(E value) noexcept -> detail::enable_if_enum_t<E, optional<std::size_t>> { using D = std::decay_t<E>; if (const auto i = detail::endex<D>(value); i != detail::invalid_index_v<D>) { return i; } return {}; // Invalid value or out of range. } // Checks whether enum contains enumerator with such enum value. template <typename E> [[nodiscard]] constexpr auto enum_contains(E value) noexcept -> detail::enable_if_enum_t<E, bool> { using D = std::decay_t<E>; return detail::endex<D>(value) != detail::invalid_index_v<D>; } // Checks whether enum contains enumerator with such integer value. template <typename E> [[nodiscard]] constexpr auto enum_contains(underlying_type_t<E> value) noexcept -> detail::enable_if_enum_t<E, bool> { using D = std::decay_t<E>; return detail::undex<D>(value) != detail::invalid_index_v<D>; } // Checks whether enum contains enumerator with such name. template <typename E, typename BinaryPredicate> [[nodiscard]] constexpr auto enum_contains(string_view value, BinaryPredicate p) noexcept(std::is_nothrow_invocable_r_v<bool, BinaryPredicate, char, char>) -> detail::enable_if_enum_t<E, bool> { static_assert(std::is_invocable_r_v<bool, BinaryPredicate, char, char>, "magic_enum::enum_contains requires bool(char, char) invocable predicate."); using D = std::decay_t<E>; return enum_cast<D>(value, std::move_if_noexcept(p)).has_value(); } // Checks whether enum contains enumerator with such name. template <typename E> [[nodiscard]] constexpr auto enum_contains(string_view value) noexcept -> detail::enable_if_enum_t<E, bool> { using D = std::decay_t<E>; return enum_cast<D>(value).has_value(); } namespace ostream_operators { template <typename Char, typename Traits, typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0> std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, E value) { using D = std::decay_t<E>; using U = underlying_type_t<D>; #if defined(MAGIC_ENUM_SUPPORTED) && MAGIC_ENUM_SUPPORTED if (const auto name = magic_enum::enum_name<D>(value); !name.empty()) { for (const auto c : name) { os.put(c); } return os; } #endif return (os << static_cast<U>(value)); } template <typename Char, typename Traits, typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0> std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, optional<E> value) { return value.has_value() ? (os << value.value()) : os; } } // namespace magic_enum::ostream_operators namespace bitwise_operators { template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0> constexpr E operator~(E rhs) noexcept { return static_cast<E>(~static_cast<underlying_type_t<E>>(rhs)); } template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0> constexpr E operator|(E lhs, E rhs) noexcept { return static_cast<E>(static_cast<underlying_type_t<E>>(lhs) | static_cast<underlying_type_t<E>>(rhs)); } template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0> constexpr E operator&(E lhs, E rhs) noexcept { return static_cast<E>(static_cast<underlying_type_t<E>>(lhs) & static_cast<underlying_type_t<E>>(rhs)); } template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0> constexpr E operator^(E lhs, E rhs) noexcept { return static_cast<E>(static_cast<underlying_type_t<E>>(lhs) ^ static_cast<underlying_type_t<E>>(rhs)); } template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0> constexpr E& operator|=(E& lhs, E rhs) noexcept { return lhs = (lhs | rhs); } template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0> constexpr E& operator&=(E& lhs, E rhs) noexcept { return lhs = (lhs & rhs); } template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0> constexpr E& operator^=(E& lhs, E rhs) noexcept { return lhs = (lhs ^ rhs); } } // namespace magic_enum::bitwise_operators namespace flags { // Returns type name of enum. using magic_enum::enum_type_name; // Returns number of enum-flags values. template <typename E> [[nodiscard]] constexpr auto enum_count() noexcept -> detail::enable_if_enum_t<E, std::size_t> { using D = std::decay_t<E>; return detail::count_v<D, true>; } // Returns enum-flags value at specified index. // No bounds checking is performed: the behavior is undefined if index >= number of enum-flags values. template <typename E> [[nodiscard]] constexpr auto enum_value(std::size_t index) noexcept -> detail::enable_if_enum_t<E, std::decay_t<E>> { using D = std::decay_t<E>; static_assert(detail::count_v<D, true> > 0, "magic_enum::flags requires enum-flags implementation."); if constexpr (detail::is_sparse_v<D, true>) { return assert((index < detail::count_v<D, true>)), detail::values_v<D, true>[index]; } else { constexpr auto min = detail::log2(detail::min_v<D, true>); return assert((index < detail::count_v<D, true>)), detail::value<D, min, true>(index); } } // Returns std::array with enum-flags values, sorted by enum-flags value. template <typename E> [[nodiscard]] constexpr auto enum_values() noexcept -> detail::enable_if_enum_t<E, detail::values_t<E, true>> { using D = std::decay_t<E>; static_assert(detail::count_v<D, true> > 0, "magic_enum::flags requires enum-flags implementation."); return detail::values_v<D, true>; } // Returns name from enum-flags value. // If enum-flags value does not have name or value out of range, returns empty string. template <typename E> [[nodiscard]] auto enum_name(E value) -> detail::enable_if_enum_t<E, string> { using D = std::decay_t<E>; using U = underlying_type_t<D>; string name; auto check_value = U{0}; for (std::size_t i = 0; i < detail::count_v<D, true>; ++i) { if (const auto v = static_cast<U>(enum_value<D>(i)); (static_cast<U>(value) & v) != 0) { check_value |= v; const auto n = detail::names_v<D, true>[i]; if (!name.empty()) { name.append(1, '|'); } name.append(n.data(), n.size()); } } if (check_value != 0 && check_value == static_cast<U>(value)) { return name; } return {}; // Invalid value or out of range. } // Returns std::array with string names, sorted by enum-flags value. template <typename E> [[nodiscard]] constexpr auto enum_names() noexcept -> detail::enable_if_enum_t<E, detail::names_t<E, true>> { using D = std::decay_t<E>; static_assert(detail::count_v<D, true> > 0, "magic_enum::flags requires enum-flags implementation."); return detail::names_v<D, true>; } // Returns std::array with pairs (value, name), sorted by enum-flags value. template <typename E> [[nodiscard]] constexpr auto enum_entries() noexcept -> detail::enable_if_enum_t<E, detail::entries_t<E, true>> { using D = std::decay_t<E>; static_assert(detail::count_v<D, true> > 0, "magic_enum::flags requires enum-flags implementation."); return detail::entries_v<D, true>; } // Obtains enum-flags value from integer value. // Returns optional with enum-flags value. template <typename E> [[nodiscard]] constexpr auto enum_cast(underlying_type_t<E> value) noexcept -> detail::enable_if_enum_t<E, optional<std::decay_t<E>>> { using D = std::decay_t<E>; using U = underlying_type_t<D>; if constexpr (detail::is_sparse_v<D, true>) { auto check_value = U{0}; for (std::size_t i = 0; i < detail::count_v<D, true>; ++i) { if (const auto v = static_cast<U>(enum_value<D>(i)); (value & v) != 0) { check_value |= v; } } if (check_value != 0 && check_value == value) { return static_cast<D>(value); } } else { constexpr auto min = detail::min_v<D, true>; constexpr auto max = detail::value_ors<D>(); if (value >= min && value <= max) { return static_cast<D>(value); } } return {}; // Invalid value or out of range. } // Obtains enum-flags value from name. // Returns optional with enum-flags value. template <typename E, typename BinaryPredicate> [[nodiscard]] constexpr auto enum_cast(string_view value, BinaryPredicate p) noexcept(std::is_nothrow_invocable_r_v<bool, BinaryPredicate, char, char>) -> detail::enable_if_enum_t<E, optional<std::decay_t<E>>> { static_assert(std::is_invocable_r_v<bool, BinaryPredicate, char, char>, "magic_enum::flags::enum_cast requires bool(char, char) invocable predicate."); using D = std::decay_t<E>; using U = underlying_type_t<D>; auto result = U{0}; while (!value.empty()) { const auto d = detail::find(value, '|'); const auto s = (d == string_view::npos) ? value : value.substr(0, d); auto f = U{0}; for (std::size_t i = 0; i < detail::count_v<D, true>; ++i) { if (detail::cmp_equal(s, detail::names_v<D, true>[i], p)) { f = static_cast<U>(enum_value<D>(i)); result |= f; break; } } if (f == U{0}) { return {}; // Invalid value or out of range. } value.remove_prefix((d == string_view::npos) ? value.size() : d + 1); } if (result == U{0}) { return {}; // Invalid value or out of range. } else { return static_cast<D>(result); } } // Obtains enum-flags value from name. // Returns optional with enum-flags value. template <typename E> [[nodiscard]] constexpr auto enum_cast(string_view value) noexcept -> detail::enable_if_enum_t<E, optional<std::decay_t<E>>> { using D = std::decay_t<E>; return enum_cast<D>(value, detail::char_equal_to{}); } // Returns integer value from enum value. using magic_enum::enum_integer; // Obtains index in enum-flags values from enum-flags value. // Returns optional with index. template <typename E> [[nodiscard]] constexpr auto enum_index(E value) noexcept -> detail::enable_if_enum_t<E, optional<std::size_t>> { using D = std::decay_t<E>; using U = underlying_type_t<D>; if (detail::is_pow2(static_cast<U>(value))) { for (std::size_t i = 0; i < detail::count_v<D, true>; ++i) { if (enum_value<D>(i) == value) { return i; } } } return {}; // Invalid value or out of range. } // Checks whether enum-flags contains enumerator with such enum-flags value. template <typename E> [[nodiscard]] constexpr auto enum_contains(E value) noexcept -> detail::enable_if_enum_t<E, bool> { using D = std::decay_t<E>; using U = underlying_type_t<D>; return enum_cast<D>(static_cast<U>(value)).has_value(); } // Checks whether enum-flags contains enumerator with such integer value. template <typename E> [[nodiscard]] constexpr auto enum_contains(underlying_type_t<E> value) noexcept -> detail::enable_if_enum_t<E, bool> { using D = std::decay_t<E>; return enum_cast<D>(value).has_value(); } // Checks whether enum-flags contains enumerator with such name. template <typename E, typename BinaryPredicate> [[nodiscard]] constexpr auto enum_contains(string_view value, BinaryPredicate p) noexcept(std::is_nothrow_invocable_r_v<bool, BinaryPredicate, char, char>) -> detail::enable_if_enum_t<E, bool> { static_assert(std::is_invocable_r_v<bool, BinaryPredicate, char, char>, "magic_enum::flags::enum_contains requires bool(char, char) invocable predicate."); using D = std::decay_t<E>; return enum_cast<D>(value, std::move_if_noexcept(p)).has_value(); } // Checks whether enum-flags contains enumerator with such name. template <typename E> [[nodiscard]] constexpr auto enum_contains(string_view value) noexcept -> detail::enable_if_enum_t<E, bool> { using D = std::decay_t<E>; return enum_cast<D>(value).has_value(); } } // namespace magic_enum::flags namespace flags::ostream_operators { template <typename Char, typename Traits, typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0> std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, E value) { using D = std::decay_t<E>; using U = underlying_type_t<D>; #if defined(MAGIC_ENUM_SUPPORTED) && MAGIC_ENUM_SUPPORTED if (const auto name = magic_enum::flags::enum_name<D>(value); !name.empty()) { for (const auto c : name) { os.put(c); } return os; } #endif return (os << static_cast<U>(value)); } template <typename Char, typename Traits, typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0> std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, optional<E> value) { return value.has_value() ? (os << value.value()) : os; } } // namespace magic_enum::flags::ostream_operators namespace flags::bitwise_operators { using namespace magic_enum::bitwise_operators; } // namespace magic_enum::flags::bitwise_operators } // namespace magic_enum #if defined(__clang__) # pragma clang diagnostic pop #elif defined(__GNUC__) # pragma GCC diagnostic pop #elif defined(_MSC_VER) # pragma warning(pop) #endif #endif // NEARGYE_MAGIC_ENUM_HPP