#ifndef __DNA_COMMON_HPP__ #define __DNA_COMMON_HPP__ #include #include #include #include #include #include "hecl/hecl.hpp" #include "hecl/Database.hpp" #include "../SpecBase.hpp" #include "boo/ThreadLocalPtr.hpp" #include "zeus/CColor.hpp" namespace DataSpec { extern logvisor::Module LogDNACommon; extern ThreadLocalPtr g_curSpec; extern ThreadLocalPtr g_PakRouter; extern ThreadLocalPtr g_ThreadBlenderToken; /* This comes up a great deal */ typedef athena::io::DNA BigDNA; typedef athena::io::DNAYaml BigYAML; /** FourCC with DNA read/write */ class DNAFourCC final : public BigYAML, public hecl::FourCC { public: DNAFourCC() : hecl::FourCC() {} DNAFourCC(const hecl::FourCC& other) : hecl::FourCC() {num = other.toUint32();} DNAFourCC(const char* name) : hecl::FourCC(name) {} DNAFourCC(uint32_t n) : hecl::FourCC(n) {} Delete expl; void read(athena::io::IStreamReader& reader) {reader.readUBytesToBuf(fcc, 4);} void write(athena::io::IStreamWriter& writer) const {writer.writeUBytes((atUint8*)fcc, 4);} void read(athena::io::YAMLDocReader& reader) {std::string rs = reader.readString(nullptr); strncpy(fcc, rs.c_str(), 4);} void write(athena::io::YAMLDocWriter& writer) const {writer.writeString(nullptr, std::string(fcc, 4));} size_t binarySize(size_t __isz) const {return __isz + 4;} }; class DNAColor final : public BigYAML, public zeus::CColor { public: DNAColor() = default; DNAColor(const zeus::CColor& color) : zeus::CColor(color) {} Delete expl; void read(athena::io::IStreamReader& reader) {zeus::CColor::readRGBABig(reader);} void write(athena::io::IStreamWriter& writer) const {zeus::CColor::writeRGBABig(writer);} void read(athena::io::YAMLDocReader& reader) { size_t count; if (auto v = reader.enterSubVector(nullptr, count)) { r = (count >= 1) ? reader.readFloat(nullptr) : 0.f; g = (count >= 2) ? reader.readFloat(nullptr) : 0.f; b = (count >= 3) ? reader.readFloat(nullptr) : 0.f; a = (count >= 4) ? reader.readFloat(nullptr) : 0.f; } } void write(athena::io::YAMLDocWriter& writer) const { if (auto v = writer.enterSubVector(nullptr)) { writer.writeFloat(nullptr, r); writer.writeFloat(nullptr, g); writer.writeFloat(nullptr, b); writer.writeFloat(nullptr, a); } } size_t binarySize(size_t __isz) const {return __isz + 4;} }; using FourCC = hecl::FourCC; class UniqueID32; class UniqueID64; class UniqueID128; /** Common virtual interface for runtime ambiguity resolution */ class PAKRouterBase { protected: const SpecBase& m_dataSpec; public: PAKRouterBase(const SpecBase& dataSpec) : m_dataSpec(dataSpec) {} hecl::Database::Project& getProject() const {return m_dataSpec.getProject();} virtual hecl::ProjectPath getWorking(const UniqueID32&, bool silenceWarnings=false) const { LogDNACommon.report(logvisor::Fatal, "PAKRouter IDType mismatch; expected UniqueID32 specialization"); return hecl::ProjectPath(); } virtual hecl::ProjectPath getWorking(const UniqueID64&, bool silenceWarnings=false) const { LogDNACommon.report(logvisor::Fatal, "PAKRouter IDType mismatch; expected UniqueID64 specialization"); return hecl::ProjectPath(); } virtual hecl::ProjectPath getWorking(const UniqueID128&, bool silenceWarnings=false) const { LogDNACommon.report(logvisor::Fatal, "PAKRouter IDType mismatch; expected UniqueID128 specialization"); return hecl::ProjectPath(); } }; /** Globally-accessed manager allowing UniqueID* classes to directly * lookup destination paths of resources */ class UniqueIDBridge { friend class UniqueID32; friend class UniqueID64; static ThreadLocalPtr s_Project; public: template static hecl::ProjectPath TranslatePakIdToPath(const IDType& id, bool silenceWarnings=false); template static hecl::ProjectPath MakePathFromString(const std::string& str); template static void TransformOldHashToNewHash(IDType& id); static void setThreadProject(hecl::Database::Project& project); }; /** PAK 32-bit Unique ID */ class UniqueID32 : public BigYAML { protected: uint32_t m_id = 0xffffffff; public: static UniqueID32 kInvalidId; Delete expl; operator bool() const {return m_id != 0xffffffff && m_id != 0;} void read(athena::io::IStreamReader& reader); void write(athena::io::IStreamWriter& writer) const; void read(athena::io::YAMLDocReader& reader); void write(athena::io::YAMLDocWriter& writer) const; size_t binarySize(size_t __isz) const; UniqueID32& operator=(const hecl::ProjectPath& path) {m_id = path.hash().val32(); return *this;} bool operator!=(const UniqueID32& other) const {return m_id != other.m_id;} bool operator==(const UniqueID32& other) const {return m_id == other.m_id;} bool operator<(const UniqueID32& other) const {return m_id < other.m_id;} uint32_t toUint32() const {return m_id;} uint64_t toUint64() const {return m_id;} std::string toString() const; void clear() {m_id = 0xffffffff;} UniqueID32() = default; UniqueID32(uint32_t idin) : m_id(idin) {} UniqueID32(athena::io::IStreamReader& reader) {read(reader);} UniqueID32(const hecl::ProjectPath& path) {*this = path;} UniqueID32(const char* hexStr) { char copy[9]; strncpy(copy, hexStr, 8); copy[8] = '\0'; m_id = strtoul(copy, nullptr, 16); } UniqueID32(const wchar_t* hexStr) { wchar_t copy[9]; wcsncpy(copy, hexStr, 8); copy[8] = L'\0'; m_id = wcstoul(copy, nullptr, 16); } static constexpr size_t BinarySize() {return 4;} }; class AuxiliaryID32 : public UniqueID32 { const hecl::SystemChar* m_auxStr; const hecl::SystemChar* m_addExtension; UniqueID32 m_baseId; public: AuxiliaryID32(const hecl::SystemChar* auxStr, const hecl::SystemChar* addExtension=nullptr) : m_auxStr(auxStr), m_addExtension(addExtension) {} AuxiliaryID32& operator=(const hecl::ProjectPath& path); AuxiliaryID32& operator=(const UniqueID32& id); void read(athena::io::IStreamReader& reader); void write(athena::io::IStreamWriter& writer) const; void read(athena::io::YAMLDocReader& reader); void write(athena::io::YAMLDocWriter& writer) const; const UniqueID32& getBaseId() const {return m_baseId;} }; /** PAK 64-bit Unique ID */ class UniqueID64 : public BigYAML { uint64_t m_id = 0xffffffffffffffff; public: Delete expl; operator bool() const {return m_id != 0xffffffffffffffff && m_id != 0;} void read(athena::io::IStreamReader& reader); void write(athena::io::IStreamWriter& writer) const; void read(athena::io::YAMLDocReader& reader); void write(athena::io::YAMLDocWriter& writer) const; size_t binarySize(size_t __isz) const; UniqueID64& operator=(const hecl::ProjectPath& path) {m_id = path.hash().val64(); return *this;} bool operator!=(const UniqueID64& other) const {return m_id != other.m_id;} bool operator==(const UniqueID64& other) const {return m_id == other.m_id;} bool operator<(const UniqueID64& other) const {return m_id < other.m_id;} uint64_t toUint64() const {return m_id;} std::string toString() const; void clear() {m_id = 0xffffffffffffffff;} UniqueID64() = default; UniqueID64(uint64_t idin) : m_id(idin) {} UniqueID64(athena::io::IStreamReader& reader) {read(reader);} UniqueID64(const hecl::ProjectPath& path) {*this = path;} UniqueID64(const char* hexStr) { char copy[17]; strncpy(copy, hexStr, 16); copy[16] = '\0'; #if _WIN32 m_id = _strtoui64(copy, nullptr, 16); #else m_id = strtouq(copy, nullptr, 16); #endif } UniqueID64(const wchar_t* hexStr) { wchar_t copy[17]; wcsncpy(copy, hexStr, 16); copy[16] = L'\0'; #if _WIN32 m_id = _wcstoui64(copy, nullptr, 16); #else m_id = wcstoull(copy, nullptr, 16); #endif } static constexpr size_t BinarySize() {return 8;} }; /** PAK 128-bit Unique ID */ class UniqueID128 : public BigYAML { union { uint64_t m_id[2]; #if __SSE__ __m128i m_id128; #endif }; public: Delete expl; UniqueID128() {m_id[0]=0xffffffffffffffff; m_id[1]=0xffffffffffffffff;} operator bool() const {return m_id[0] != 0xffffffffffffffff && m_id[0] != 0 && m_id[1] != 0xffffffffffffffff && m_id[1] != 0;} void read(athena::io::IStreamReader& reader); void write(athena::io::IStreamWriter& writer) const; void read(athena::io::YAMLDocReader& reader); void write(athena::io::YAMLDocWriter& writer) const; size_t binarySize(size_t __isz) const; UniqueID128& operator=(const hecl::ProjectPath& path) { m_id[0] = path.hash().val64(); m_id[1] = 0; return *this; } UniqueID128(const hecl::ProjectPath& path) {*this = path;} bool operator!=(const UniqueID128& other) const { #if __SSE__ __m128i vcmp = _mm_cmpeq_epi32(m_id128, other.m_id128); int vmask = _mm_movemask_epi8(vcmp); return vmask != 0xffff; #else return (m_id[0] != other.m_id[0]) || (m_id[1] != other.m_id[1]); #endif } bool operator==(const UniqueID128& other) const { #if __SSE__ __m128i vcmp = _mm_cmpeq_epi32(m_id128, other.m_id128); int vmask = _mm_movemask_epi8(vcmp); return vmask == 0xffff; #else return (m_id[0] == other.m_id[0]) && (m_id[1] == other.m_id[1]); #endif } void clear() {m_id[0] = 0xffffffffffffffff; m_id[1] = 0xffffffffffffffff;} uint64_t toUint64() const {return m_id[0];} uint64_t toHighUint64() const {return m_id[0];} uint64_t toLowUint64() const {return m_id[1];} std::string toString() const; static constexpr size_t BinarySize() {return 16;} }; /** Word Bitmap reader/writer */ class WordBitmap { std::vector m_words; size_t m_bitCount = 0; public: void read(athena::io::IStreamReader& reader, size_t bitCount); void write(athena::io::IStreamWriter& writer) const; void reserve(size_t bitCount) { m_words.reserve((bitCount + 31) / 32); } size_t binarySize(size_t __isz) const; size_t getBitCount() const {return m_bitCount;} bool getBit(size_t idx) const { size_t wordIdx = idx / 32; if (wordIdx >= m_words.size()) return false; size_t wordCur = idx % 32; return (m_words[wordIdx] >> wordCur) & 0x1; } void setBit(size_t idx) { size_t wordIdx = idx / 32; while (wordIdx >= m_words.size()) m_words.push_back(0); size_t wordCur = idx % 32; m_words[wordIdx] |= (1 << wordCur); m_bitCount = std::max(m_bitCount, idx + 1); } void unsetBit(size_t idx) { size_t wordIdx = idx / 32; while (wordIdx >= m_words.size()) m_words.push_back(0); size_t wordCur = idx % 32; m_words[wordIdx] &= ~(1 << wordCur); m_bitCount = std::max(m_bitCount, idx + 1); } void clear() { m_words.clear(); m_bitCount = 0; } class Iterator : public std::iterator { friend class WordBitmap; const WordBitmap& m_bmp; size_t m_idx = 0; Iterator(const WordBitmap& bmp, size_t idx) : m_bmp(bmp), m_idx(idx) {} public: Iterator& operator++() {++m_idx; return *this;} bool operator*() {return m_bmp.getBit(m_idx);} bool operator!=(const Iterator& other) const {return m_idx != other.m_idx;} }; Iterator begin() const {return Iterator(*this, 0);} Iterator end() const {return Iterator(*this, m_bitCount);} }; /** Resource cooker function */ typedef std::function ResCooker; } /* Hash template-specializations for UniqueID types */ namespace std { template<> struct hash { size_t operator()(const DataSpec::DNAFourCC& fcc) const {return fcc.toUint32();} }; template<> struct hash { size_t operator()(const DataSpec::UniqueID32& id) const {return id.toUint32();} }; template<> struct hash { size_t operator()(const DataSpec::UniqueID64& id) const {return id.toUint64();} }; template<> struct hash { size_t operator()(const DataSpec::UniqueID128& id) const {return id.toHighUint64() ^ id.toLowUint64();} }; } #endif // __DNA_COMMON_HPP__