#include "CPhysicsActor.hpp" namespace urde { CPhysicsActor::CPhysicsActor(TUniqueId uid, bool active, const std::string& name, const CEntityInfo& info, const zeus::CTransform& xf, CModelData&& mData, const CMaterialList& matList, const zeus::CAABox& box, const SMoverData& moverData, const CActorParameters& actorParms, float stepUp, float stepDown) : CActor(uid, active, name, info, xf, std::move(mData), matList, actorParms, kInvalidUniqueId) , xe8_mass(moverData.x30_mass) , xec_massRecip(moverData.x30_mass <= 0.f ? 1.f : 1.f / moverData.x30_mass) , x150_momentum(moverData.x18_momentum) , x1c0_collisionPrimitive(box, matList) , x1f4_lastNonCollidingState(xf.origin, xf.buildMatrix3f()) , x23c_stepUpHeight(stepUp) , x240_stepDownHeight(stepDown) { xf8_24_movable = true; SetMass(moverData.x30_mass); MoveCollisionPrimitive(zeus::CVector3f::skZero); SetVelocityOR(moverData.x0_velocity); SetAngularVelocityOR(moverData.xc_angularVelocity); ComputeDerivedQuantities(); } void CPhysicsActor::Render(const CStateManager& mgr) const { CActor::Render(mgr); } zeus::CVector3f CPhysicsActor::GetOrbitPosition(const CStateManager&) const { return GetBoundingBox().center(); } zeus::CVector3f CPhysicsActor::GetAimPosition(const CStateManager&, float dt) const { if (dt <= 0.0) return GetBoundingBox().center(); zeus::CVector3f trans = PredictMotion(dt).x0_translation; return GetBoundingBox().center() + trans; } void CPhysicsActor::CollidedWith(TUniqueId, const CCollisionInfoList&, CStateManager&) {} const CCollisionPrimitive* CPhysicsActor::GetCollisionPrimitive() const { return &x1c0_collisionPrimitive; } zeus::CTransform CPhysicsActor::GetPrimitiveTransform() const { return zeus::CTransform::Translate(x34_transform.origin + x1e8_primitiveOffset); } float CPhysicsActor::GetStepUpHeight() const { return x23c_stepUpHeight; } float CPhysicsActor::GetStepDownHeight() const { return x240_stepDownHeight; } float CPhysicsActor::GetWeight() const { return 24.525002f * xe8_mass; } void CPhysicsActor::SetPrimitiveOffset(const zeus::CVector2f& offset) { x1e8_primitiveOffset = offset; } zeus::CVector3f CPhysicsActor::GetPrimitiveOffset() { return x1e8_primitiveOffset; } void CPhysicsActor::MoveCollisionPrimitive(const zeus::CVector3f& offset) { x1e8_primitiveOffset = offset; } void CPhysicsActor::SetBoundingBox(const zeus::CAABox& box) { x1a4_baseBoundingBox = box; MoveCollisionPrimitive(zeus::CVector3f::skZero); } zeus::CAABox CPhysicsActor::GetMotionVolume(float dt) const { zeus::CAABox aabox = GetCollisionPrimitive()->CalculateAABox(GetPrimitiveTransform()); zeus::CVector3f velocity = CalculateNewVelocityWR_UsingImpulses(); const zeus::CVector3f dv = (dt * velocity); aabox.accumulateBounds(aabox.max + dv); aabox.accumulateBounds(aabox.min + dv); float up = GetStepUpHeight(); up = zeus::max(up, 0.f); aabox.accumulateBounds(aabox.max + up); float down = GetStepDownHeight(); down = zeus::max(down, 0.f); aabox.accumulateBounds(aabox.min + down); return aabox; } zeus::CVector3f CPhysicsActor::CalculateNewVelocityWR_UsingImpulses() const { return x138_velocity + (xec_massRecip * (x168_impulse + x18c_)); } zeus::CAABox CPhysicsActor::GetBoundingBox() const { return {x1a4_baseBoundingBox.min + x1e8_primitiveOffset + x34_transform.origin, x1a4_baseBoundingBox.max + x1e8_primitiveOffset + x34_transform.origin}; } const zeus::CAABox& CPhysicsActor::GetBaseBoundingBox() const { return x1a4_baseBoundingBox; } void CPhysicsActor::AddMotionState(const CMotionState& mst) { zeus::CNUQuaternion q{x34_transform.buildMatrix3f()}; q += mst.xc_orientation; x34_transform = zeus::CTransform(q, x34_transform.origin); xe4_27_ = true; xe4_28_ = true; xe4_29_ = true; SetTranslation(x34_transform.origin + mst.x0_translation); xfc_constantForce += mst.x1c_velocity; ComputeDerivedQuantities(); } CMotionState CPhysicsActor::GetMotionState() const { return {x34_transform.origin, {x34_transform.buildMatrix3f()}, xfc_constantForce, x108_angularMomentum}; } void CPhysicsActor::SetMotionState(const CMotionState& mst) { x34_transform = zeus::CTransform(mst.xc_orientation, x34_transform.origin); xe4_27_ = true; xe4_28_ = true; xe4_29_ = true; SetTranslation(mst.x0_translation); xfc_constantForce = mst.x1c_velocity; x108_angularMomentum = mst.x28_angularMomentum; ComputeDerivedQuantities(); } void CPhysicsActor::SetInertiaTensorScalar(float tensor) { if (tensor <= 0.0f) tensor = 1.0f; xf0_inertiaTensor = tensor; xf4_inertiaTensorRecip = 1.0f / tensor; } void CPhysicsActor::SetMass(float mass) { xe8_mass = mass; float tensor = 1.0f; if (mass > 0.0f) tensor = 1.0f / mass; xec_massRecip = tensor; SetInertiaTensorScalar(mass * tensor); } void CPhysicsActor::SetAngularVelocityOR(const zeus::CAxisAngle& angVel) { x144_angularVelocity = x34_transform.rotate(angVel); x108_angularMomentum = xf0_inertiaTensor * x144_angularVelocity; } zeus::CAxisAngle CPhysicsActor::GetAngularVelocityOR() const { return x34_transform.transposeRotate(x144_angularVelocity); } void CPhysicsActor::SetAngularVelocityWR(const zeus::CAxisAngle& angVel) { x144_angularVelocity = angVel; x108_angularMomentum = xf0_inertiaTensor * x144_angularVelocity; } void CPhysicsActor::SetVelocityWR(const zeus::CVector3f& vel) { x138_velocity = vel; xfc_constantForce = xe8_mass * x138_velocity; } void CPhysicsActor::SetVelocityOR(const zeus::CVector3f& vel) { SetVelocityWR(x34_transform.rotate(vel)); } zeus::CVector3f CPhysicsActor::GetTotalForcesWR() const { return x15c_force + x150_momentum; } void CPhysicsActor::RotateInOneFrameOR(const zeus::CQuaternion& q, float d) { x198_ += GetRotateToORAngularMomentumWR(q, d); } void CPhysicsActor::MoveInOneFrameOR(const zeus::CVector3f& trans, float d) { x18c_ += GetMoveToORImpulseWR(trans, d); } void CPhysicsActor::RotateToOR(const zeus::CQuaternion& q, float d) { x108_angularMomentum = GetRotateToORAngularMomentumWR(q, d); ComputeDerivedQuantities(); } void CPhysicsActor::MoveToOR(const zeus::CVector3f& trans, float d) { xfc_constantForce = GetMoveToORImpulseWR(trans, d); ComputeDerivedQuantities(); } void CPhysicsActor::sub_8011B098(const zeus::CVector3f& trans, float d) { x18c_ += xe8_mass * (trans - x34_transform.origin) * (1.f / d); } void CPhysicsActor::MoveToWR(const zeus::CVector3f& trans, float d) { xfc_constantForce = xe8_mass * (trans - x34_transform.origin) * (1.f / d); ComputeDerivedQuantities(); } zeus::CAxisAngle CPhysicsActor::GetRotateToORAngularMomentumWR(const zeus::CQuaternion& q, float d) const { if (q.w > 0.99999976) return zeus::CAxisAngle::skZero; return (xf0_inertiaTensor * (((2.f * std::acos(q.w)) * (1.f / d)) * x34_transform.rotate({q.x, q.y, q.z}).normalized())); } zeus::CVector3f CPhysicsActor::GetMoveToORImpulseWR(const zeus::CVector3f& trans, float d) const { return (xe8_mass * x34_transform.rotate(trans)) * (1.f / d); } void CPhysicsActor::ClearImpulses() { x18c_ = x168_impulse = zeus::CVector3f::skZero; x198_ = x180_angularImpulse = zeus::CAxisAngle::skZero; } void CPhysicsActor::ClearForcesAndTorques() { x18c_ = x168_impulse = x15c_force = zeus::CVector3f::skZero; x198_ = x180_angularImpulse = x174_torque = zeus::CAxisAngle::skZero; } void CPhysicsActor::Stop() { ClearForcesAndTorques(); xfc_constantForce = zeus::CVector3f::skZero; x108_angularMomentum = zeus::CAxisAngle::skZero; ComputeDerivedQuantities(); } void CPhysicsActor::ComputeDerivedQuantities() { x138_velocity = xec_massRecip * xfc_constantForce; x114_ = x34_transform.buildMatrix3f(); x144_angularVelocity = xf0_inertiaTensor * x108_angularMomentum; } bool CPhysicsActor::WillMove(const CStateManager&) { if (!zeus::close_enough(zeus::CVector3f::skZero, x138_velocity) || !zeus::close_enough(zeus::CVector3f::skZero, x168_impulse) || !zeus::close_enough(zeus::CVector3f::skZero, x174_torque) || !zeus::close_enough(zeus::CVector3f::skZero, x18c_) || !zeus::close_enough(zeus::CVector3f::skZero, x144_angularVelocity) || !zeus::close_enough(zeus::CVector3f::skZero, x180_angularImpulse) || !zeus::close_enough(zeus::CVector3f::skZero, x198_) || !zeus::close_enough(zeus::CVector3f::skZero, GetTotalForcesWR())) return true; return false; } void CPhysicsActor::SetPhysicsState(const CPhysicsState& state) { SetTranslation(state.GetTranslation()); x34_transform = zeus::CTransform(state.GetOrientation(), x34_transform.origin); xe4_27_ = true; xe4_28_ = true; xe4_29_ = true; xfc_constantForce = state.GetConstantForceWR(); x108_angularMomentum = state.GetAngularMomentumWR(); ; x150_momentum = state.GetMomentumWR(); x15c_force = state.GetForceWR(); x168_impulse = state.GetImpulseWR(); x174_torque = state.GetTorque(); x180_angularImpulse = state.GetAngularImpulseWR(); ComputeDerivedQuantities(); } CPhysicsState CPhysicsActor::GetPhysicsState() const { return {x34_transform.origin, {x34_transform.buildMatrix3f()}, xfc_constantForce, x108_angularMomentum, x150_momentum, x15c_force, x168_impulse, x174_torque, x180_angularImpulse}; } CMotionState CPhysicsActor::PredictMotion_Internal(float dt) const { if (xf8_25_angularEnabled) return PredictMotion(dt); CMotionState msl = PredictLinearMotion(dt); CMotionState msa = PredictAngularMotion(dt); return {msl.x0_translation, msa.xc_orientation, msl.x1c_velocity, msa.x28_angularMomentum}; } CMotionState CPhysicsActor::PredictMotion(float dt) const { CMotionState msl = PredictLinearMotion(dt); CMotionState msa = PredictAngularMotion(dt); return {msl.x0_translation, msa.xc_orientation, msl.x1c_velocity, msa.x28_angularMomentum}; } CMotionState CPhysicsActor::PredictLinearMotion(float dt) const { zeus::CVector3f velocity = CalculateNewVelocityWR_UsingImpulses(); return {velocity * dt, zeus::CNUQuaternion::skNoRotation, ((x15c_force + x150_momentum) * dt) + x168_impulse, zeus::CAxisAngle::skZero}; } CMotionState CPhysicsActor::PredictAngularMotion(float dt) const { const zeus::CVector3f v1 = xf4_inertiaTensorRecip * (x180_angularImpulse + x198_); zeus::CNUQuaternion q = 0.5f * zeus::CNUQuaternion({0.f, x144_angularVelocity + v1}); return {zeus::CVector3f::skZero, q * zeus::CNUQuaternion(x34_transform.buildMatrix3f()) * dt, zeus::CVector3f::skZero, (x174_torque * dt) + x180_angularImpulse}; } void CPhysicsActor::ApplyForceOR(const zeus::CVector3f& force, const zeus::CAxisAngle& torque) { x15c_force += x34_transform.rotate(force); x174_torque += x34_transform.rotate(torque); } void CPhysicsActor::ApplyForceWR(const zeus::CVector3f& force, const zeus::CAxisAngle& torque) { x15c_force += force; x174_torque += torque; } void CPhysicsActor::ApplyImpulseOR(const zeus::CVector3f& impulse, const zeus::CAxisAngle& angle) { x168_impulse += x34_transform.rotate(impulse); x180_angularImpulse += x34_transform.rotate(angle); } void CPhysicsActor::ApplyImpulseWR(const zeus::CVector3f& impulse, const zeus::CAxisAngle& angleImp) { x168_impulse += impulse; x180_angularImpulse += angleImp; } void CPhysicsActor::ApplyTorqueWR(const zeus::CVector3f& torque) { x174_torque += torque; } void CPhysicsActor::UseCollisionImpulses() { xfc_constantForce += x168_impulse; x108_angularMomentum += x180_angularImpulse; x168_impulse = zeus::CVector3f::skZero; x180_angularImpulse = zeus::CAxisAngle::skZero; ComputeDerivedQuantities(); } }