#include "shader_CFluidPlaneShader.hpp" #include #include #define FOG_STRUCT_METAL \ "struct Fog\n" \ "{\n" \ " float4 color;\n" \ " float A;\n" \ " float B;\n" \ " float C;\n" \ " int mode;\n" \ " float indScale;\n" \ "};\n" #define FOG_ALGORITHM_METAL \ "static float4 MainPostFunc(thread VertToFrag& vtf, constant LightingUniform& lu, float4 colorIn)\n" \ "{\n" \ " float fogZ;\n" \ " float fogF = saturate((lu.fog.A / (lu.fog.B - (1.0 - vtf.pos.z))) - lu.fog.C);\n" \ " switch (lu.fog.mode)\n" \ " {\n" \ " case 2:\n" \ " fogZ = fogF;\n" \ " break;\n" \ " case 4:\n" \ " fogZ = 1.0 - exp2(-8.0 * fogF);\n" \ " break;\n" \ " case 5:\n" \ " fogZ = 1.0 - exp2(-8.0 * fogF * fogF);\n" \ " break;\n" \ " case 6:\n" \ " fogZ = exp2(-8.0 * (1.0 - fogF));\n" \ " break;\n" \ " case 7:\n" \ " fogF = 1.0 - fogF;\n" \ " fogZ = exp2(-8.0 * fogF * fogF);\n" \ " break;\n" \ " default:\n" \ " fogZ = 0.0;\n" \ " break;\n" \ " }\n" \ "#if IS_ADDITIVE\n" \ " return float4(mix(colorIn, float4(0.0), saturate(fogZ)).rgb, colorIn.a);\n" \ "#else\n" \ " return float4(mix(colorIn, lu.fog.color, saturate(fogZ)).rgb, colorIn.a);\n" \ "#endif\n" \ "}\n" static const char* VS = "struct VertData\n" "{\n" " float4 posIn [[ attribute(0) ]];\n" " float4 normalIn [[ attribute(1) ]];\n" " float4 binormalIn [[ attribute(2) ]];\n" " float4 tangentIn [[ attribute(3) ]];\n" " float4 colorIn [[ attribute(4) ]];\n" "};\n" "\n" "struct FluidPlaneUniform\n" "{\n" " float4x4 mv;\n" " float4x4 mvNorm;\n" " float4x4 proj;\n" " float4x4 texMtxs[6];\n" "};\n" "\n" "struct VertToFrag\n" "{\n" " float4 pos [[ position ]];\n" " float4 mvPos;\n" " float4 mvNorm;\n" " float4 mvBinorm;\n" " float4 mvTangent;\n" " float4 color;\n" " float2 uv0;\n" " float2 uv1;\n" " float2 uv2;\n" " float2 uv3;\n" " float2 uv4;\n" " float2 uv5;\n" " float2 uv6;\n" "};\n" "\n" "vertex VertToFrag vmain(VertData v [[ stage_in ]],\n" " constant FluidPlaneUniform& fu [[ buffer(2) ]])\n" "{\n" " VertToFrag vtf;\n" " float4 pos = float4(v.posIn.xyz, 1.0);\n" " float4 normalIn = v.normalIn;\n" " vtf.mvPos = fu.mv * pos;\n" " vtf.pos = fu.proj * vtf.mvPos;\n" " vtf.mvNorm = fu.mvNorm * v.normalIn;\n" " vtf.mvBinorm = fu.mvNorm * v.binormalIn;\n" " vtf.mvTangent = fu.mvNorm * v.tangentIn;\n" " vtf.color = v.colorIn;\n" " vtf.uv0 = (fu.texMtxs[0] * pos).xy;\n" " vtf.uv1 = (fu.texMtxs[1] * pos).xy;\n" " vtf.uv2 = (fu.texMtxs[2] * pos).xy;\n" " ADDITIONAL_TCGS\n" // Additional TCGs here " return vtf;\n" "}\n"; static const char* TessCS = "struct VertData\n" "{\n" " float4 minMaxPos [[ attribute(0) ]];\n" " float4 outerLevelsIn [[ attribute(1) ]];\n" " float2 innerLevelsIn [[ attribute(2) ]];\n" "};\n" "\n" "struct KernelPatchInfo {\n" " uint numPatches; // total number of patches to process.\n" " // we need this because this value may\n" " // not be a multiple of threadgroup size.\n" " ushort numPatchesInThreadGroup; // number of patches processed by a\n" " // thread-group\n" " ushort numControlPointsPerPatch;\n" "};\n" "\n" "kernel void\n" "cmain(VertData v [[ stage_in ]],\n" " constant KernelPatchInfo& patchInfo [[ buffer(2) ]],\n" " device MTLQuadTessellationFactorsHalf* tessellationFactorBuffer [[ buffer(3) ]],\n" " ushort lID [[ thread_position_in_threadgroup ]],\n" " ushort groupID [[ threadgroup_position_in_grid ]])\n" "{\n" " uint patchGroupID = groupID * patchInfo.numPatchesInThreadGroup;\n" "\n" " // execute the per-patch hull function\n" " if (lID < patchInfo.numPatchesInThreadGroup)\n" " {\n" " uint patchID = patchGroupID + lID;\n" " device MTLQuadTessellationFactorsHalf& patchOut = tessellationFactorBuffer[patchID];\n" " for (int i=0 ; i<4 ; ++i)\n" " patchOut.edgeTessellationFactor[i] = v.outerLevelsIn[i];\n" " for (int i=0 ; i<2 ; ++i)\n" " patchOut.insideTessellationFactor[i] = v.innerLevelsIn[i];\n" " }\n" "}\n"; static const char* TessES = "struct Ripple\n" "{\n" " float4 center; // time, distFalloff\n" " float4 params; // amplitude, lookupPhase, lookupTime\n" "};\n" "\n" "struct FluidPlaneUniform\n" "{\n" " float4x4 mv;\n" " float4x4 mvNorm;\n" " float4x4 proj;\n" " float4x4 texMtxs[6];\n" " Ripple ripples[20];\n" " float4 colorMul;\n" " float rippleNormResolution;\n" "};\n" "\n" "struct VertToFrag\n" "{\n" " float4 pos [[ position ]];\n" " float4 mvPos;\n" " float4 mvNorm;\n" " float4 mvBinorm;\n" " float4 mvTangent;\n" " float4 color;\n" " float2 uv0;\n" " float2 uv1;\n" " float2 uv2;\n" " float2 uv3;\n" " float2 uv4;\n" " float2 uv5;\n" " float2 uv6;\n" "};\n" "\n" "struct VertData\n" "{\n" " float4 minMaxPos [[ attribute(0) ]];\n" " float4 outerLevelsIn [[ attribute(1) ]];\n" " float2 innerLevelsIn [[ attribute(2) ]];\n" "};\n" "\n" "#define PI_X2 6.283185307179586\n" "\n" "static void ApplyRipple(constant Ripple& ripple, float2 pos, thread float& height,\n" " sampler samp, texture2d RippleMap)\n" "{\n" " float dist = length(ripple.center.xy - pos);\n" " float rippleV = RippleMap.sample(samp, float2(dist * ripple.center.w, ripple.center.z), level(0.0)).r;\n" " height += rippleV * ripple.params.x * sin((dist * ripple.params.y + ripple.params.z) * PI_X2);\n" "}\n" "\n" "[[ patch(quad, 1) ]]\n" "vertex VertToFrag emain(VertData v [[ stage_in ]], float2 TessCoord [[ position_in_patch ]],\n" " constant FluidPlaneUniform& fu [[ buffer(2) ]],\n" " sampler samp [[ sampler(2) ]],\n" " texture2d RippleMap [[ texture(RIPPLE_TEXTURE_IDX) ]])\n" "{\n" " float2 posIn = float2(mix(v.minMaxPos.x, v.minMaxPos.z, TessCoord.x),\n" " mix(v.minMaxPos.y, v.minMaxPos.w, TessCoord.y));\n" " float height = 0.0;\n" " float upHeight = 0.0;\n" " float downHeight = 0.0;\n" " float rightHeight = 0.0;\n" " float leftHeight = 0.0;\n" " for (int i=0 ; i<20 ; ++i)\n" " {\n" " ApplyRipple(fu.ripples[i], posIn, height, samp, RippleMap);\n" " ApplyRipple(fu.ripples[i], posIn + float2(0.0, fu.rippleNormResolution), upHeight, samp, RippleMap);\n" " ApplyRipple(fu.ripples[i], posIn - float2(0.0, fu.rippleNormResolution), downHeight, samp, RippleMap);\n" " ApplyRipple(fu.ripples[i], posIn + float2(fu.rippleNormResolution, 0.0), rightHeight, samp, RippleMap);\n" " ApplyRipple(fu.ripples[i], posIn - float2(fu.rippleNormResolution, 0.0), leftHeight, samp, RippleMap);\n" " }\n" " float4 normalIn = float4(normalize(float3((leftHeight - rightHeight),\n" " (downHeight - upHeight),\n" " fu.rippleNormResolution)), 1.0);\n" " float4 binormalIn = float4(normalIn.x, normalIn.z, -normalIn.y, 1.0);\n" " float4 tangentIn = float4(normalIn.z, normalIn.y, -normalIn.x, 1.0);\n" " float4 pos = float4(posIn, height, 1.0);\n" " VertToFrag vtf;\n" " vtf.mvPos = (fu.mv * pos);\n" " vtf.pos = (fu.proj * vtf.mvPos);\n" " vtf.mvNorm = (fu.mvNorm * normalIn);\n" " vtf.mvBinorm = (fu.mvNorm * binormalIn);\n" " vtf.mvTangent = (fu.mvNorm * tangentIn);\n" " vtf.color = max(height, 0.0) * fu.colorMul;\n" " vtf.color.a = 1.0;\n" " vtf.uv0 = (fu.texMtxs[0] * pos).xy;\n" " vtf.uv1 = (fu.texMtxs[1] * pos).xy;\n" " vtf.uv2 = (fu.texMtxs[2] * pos).xy;\n" " ADDITIONAL_TCGS\n" // Additional TCGs here " return vtf;\n" "}\n"; static const char* FS = "struct Light\n" "{\n" " float4 pos;\n" " float4 dir;\n" " float4 color;\n" " float4 linAtt;\n" " float4 angAtt;\n" "};\n" FOG_STRUCT_METAL "\n" "struct LightingUniform\n" "{\n" " Light lights[" _XSTR(URDE_MAX_LIGHTS) "];\n" " float4 ambient;\n" " float4 kColor0;\n" " float4 kColor1;\n" " float4 kColor2;\n" " float4 kColor3;\n" " float4 addColor;\n" " Fog fog;\n" "};\n" "\n" "static float4 LightingFunc(constant LightingUniform& lu, float3 mvPosIn, float3 mvNormIn)\n" "{\n" " float4 ret = lu.ambient;\n" " \n" " for (int i=0 ; i<" _XSTR(URDE_MAX_LIGHTS) " ; ++i)\n" " {\n" " float3 delta = mvPosIn - lu.lights[i].pos.xyz;\n" " float dist = length(delta);\n" " float angDot = clamp(dot(normalize(delta), lu.lights[i].dir.xyz), 0.0, 1.0);\n" " float att = 1.0 / (lu.lights[i].linAtt[2] * dist * dist +\n" " lu.lights[i].linAtt[1] * dist +\n" " lu.lights[i].linAtt[0]);\n" " float angAtt = lu.lights[i].angAtt[2] * angDot * angDot +\n" " lu.lights[i].angAtt[1] * angDot +\n" " lu.lights[i].angAtt[0];\n" " ret += lu.lights[i].color * angAtt * att * saturate(dot(normalize(-delta), mvNormIn));\n" " }\n" " \n" " return saturate(ret);\n" "}\n" "\n" "struct VertToFrag\n" "{\n" " float4 pos [[ position ]];\n" " float4 mvPos;\n" " float4 mvNorm;\n" " float4 mvBinorm;\n" " float4 mvTangent;\n" " float4 color;\n" " float2 uv0;\n" " float2 uv1;\n" " float2 uv2;\n" " float2 uv3;\n" " float2 uv4;\n" " float2 uv5;\n" " float2 uv6;\n" "};\n" "\n" FOG_ALGORITHM_METAL "\n" "fragment float4 fmain(VertToFrag vtf [[ stage_in ]],\n" " sampler samp [[ sampler(0) ]],\n" " constant LightingUniform& lu [[ buffer(4) ]]" " TEXTURE_PARAMS)\n" // Textures here "{\n" " float4 lighting = LightingFunc(lu, vtf.mvPos.xyz, normalize(vtf.mvNorm.xyz));\n" " float4 colorOut;\n" " COMBINER_EXPRS\n" // Combiner expression here " return MainPostFunc(vtf, lu, colorOut);\n" "}\n"; static const char* FSDoor = "struct Light\n" "{\n" " float4 pos;\n" " float4 dir;\n" " float4 color;\n" " float4 linAtt;\n" " float4 angAtt;\n" "};\n" FOG_STRUCT_METAL "\n" "struct LightingUniform\n" "{\n" " Light lights[" _XSTR(URDE_MAX_LIGHTS) "];\n" " float4 ambient;\n" " float4 kColor0;\n" " float4 kColor1;\n" " float4 kColor2;\n" " float4 kColor3;\n" " float4 addColor;\n" " Fog fog;\n" "};\n" "\n" "struct VertToFrag\n" "{\n" " float4 pos [[ position ]];\n" " float4 mvPos;\n" " float4 mvNorm;\n" " float4 mvBinorm;\n" " float4 mvTangent;\n" " float4 color;\n" " float2 uv0;\n" " float2 uv1;\n" " float2 uv2;\n" " float2 uv3;\n" " float2 uv4;\n" " float2 uv5;\n" " float2 uv6;\n" "};\n" FOG_ALGORITHM_METAL "\n" "fragment float4 fmain(VertToFrag vtf [[ stage_in ]],\n" " sampler samp [[ sampler(0) ]],\n" " constant LightingUniform& lu [[ buffer(4) ]]" " TEXTURE_PARAMS)\n" // Textures here "{\n" " float4 colorOut;\n" " COMBINER_EXPRS\n" // Combiner expression here " return MainPostFunc(vtf, lu, colorOut);\n" "}\n"; static std::string _BuildFS(const SFluidPlaneShaderInfo& info) { std::stringstream out; int nextTex = 0; int nextTCG = 3; int bumpMapUv, envBumpMapUv, envMapUv, lightmapUv; out << "#define TEXTURE_PARAMS "; if (info.m_hasPatternTex1) fmt::print(out, FMT_STRING(",texture2d patternTex1 [[ texture({}) ]]"), nextTex++); if (info.m_hasPatternTex2) fmt::print(out, FMT_STRING(",texture2d patternTex2 [[ texture({}) ]]"), nextTex++); if (info.m_hasColorTex) fmt::print(out, FMT_STRING(",texture2d colorTex [[ texture({}) ]]"), nextTex++); if (info.m_hasBumpMap) fmt::print(out, FMT_STRING(",texture2d bumpMap [[ texture({}) ]]"), nextTex++); if (info.m_hasEnvMap) fmt::print(out, FMT_STRING(",texture2d envMap [[ texture({}) ]]"), nextTex++); if (info.m_hasEnvBumpMap) fmt::print(out, FMT_STRING(",texture2d envBumpMap [[ texture({}) ]]"), nextTex++); if (info.m_hasLightmap) fmt::print(out, FMT_STRING(",texture2d lightMap [[ texture({}) ]]"), nextTex++); out << '\n'; if (info.m_hasBumpMap) { bumpMapUv = nextTCG; } if (info.m_hasEnvBumpMap) { envBumpMapUv = nextTCG; } if (info.m_hasEnvMap) { envMapUv = nextTCG; } if (info.m_hasLightmap) { lightmapUv = nextTCG; } out << "#define COMBINER_EXPRS "; switch (info.m_type) { case EFluidType::NormalWater: case EFluidType::PhazonFluid: case EFluidType::Four: if (info.m_hasLightmap) { fmt::print(out, FMT_STRING("float4 lightMapTexel = lightMap.sample(samp, vtf.uv{});"), lightmapUv); // 0: Tex4TCG, Tex4, doubleLightmapBlend ? NULL : GX_COLOR1A1 // ZERO, TEX, KONST, doubleLightmapBlend ? ZERO : RAS // Output reg 2 // KColor 2 if (info.m_doubleLightmapBlend) { // 1: Tex4TCG2, Tex4, GX_COLOR1A1 // C2, TEX, KONST, RAS // Output reg 2 // KColor 3 // Tex * K2 + Lighting out << "lighting += mix(lightMapTexel * lu.kColor2, lightMapTexel, lu.kColor3);"; } else { // mix(Tex * K2, Tex, K3) + Lighting out << "lighting += lightMapTexel * lu.kColor2;"; } } // Next: Tex0TCG, Tex0, GX_COLOR1A1 // ZERO, TEX, KONST, RAS // Output reg prev // KColor 0 // Next: Tex1TCG, Tex1, GX_COLOR0A0 // ZERO, TEX, PREV, RAS // Output reg prev // Next: Tex2TCG, Tex2, GX_COLOR1A1 // ZERO, TEX, hasTex4 ? C2 : RAS, PREV // Output reg prev // (Tex0 * kColor0 + Lighting) * Tex1 + VertColor + Tex2 * Lighting if (info.m_hasPatternTex2) { if (info.m_hasPatternTex1) out << "colorOut = (patternTex1.sample(samp, vtf.uv0) * lu.kColor0 + lighting) * " "patternTex2.sample(samp, vtf.uv1) + vtf.color;"; else out << "colorOut = lighting * patternTex2.sample(samp, vtf.uv1) + vtf.color;"; } else { out << "colorOut = vtf.color;"; } if (info.m_hasColorTex && !info.m_hasEnvMap && info.m_hasEnvBumpMap) { // Make previous stage indirect, mtx0 fmt::print(out, FMT_STRING( "float2 indUvs = (envBumpMap.sample(samp, vtf.uv{}).ra - float2(0.5, 0.5)) * " "float2(lu.fog.indScale, -lu.fog.indScale);"), envBumpMapUv); out << "colorOut += colorTex.sample(samp, indUvs + vtf.uv2) * lighting;"; } else if (info.m_hasEnvMap) { // Next: envTCG, envTex, NULL // PREV, TEX, KONST, ZERO // Output reg prev // KColor 1 // Make previous stage indirect, mtx0 if (info.m_hasColorTex) out << "colorOut += colorTex.sample(samp, vtf.uv2) * lighting;"; fmt::print(out, FMT_STRING( "float2 indUvs = (envBumpMap.sample(samp, vtf.uv{}).ra - float2(0.5, 0.5)) * " "float2(lu.fog.indScale, -lu.fog.indScale);"), envBumpMapUv); fmt::print(out, FMT_STRING( "colorOut = mix(colorOut, envMap.sample(samp, indUvs + vtf.uv{}), lu.kColor1);"), envMapUv); } else if (info.m_hasColorTex) { out << "colorOut += colorTex.sample(samp, vtf.uv2) * lighting;"; } break; case EFluidType::PoisonWater: if (info.m_hasLightmap) { fmt::print(out, FMT_STRING("float4 lightMapTexel = lightMap.sample(samp, vtf.uv{});"), lightmapUv); // 0: Tex4TCG, Tex4, doubleLightmapBlend ? NULL : GX_COLOR1A1 // ZERO, TEX, KONST, doubleLightmapBlend ? ZERO : RAS // Output reg 2 // KColor 2 if (info.m_doubleLightmapBlend) { // 1: Tex4TCG2, Tex4, GX_COLOR1A1 // C2, TEX, KONST, RAS // Output reg 2 // KColor 3 // Tex * K2 + Lighting out << "lighting += mix(lightMapTexel * lu.kColor2, lightMapTexel, lu.kColor3);"; } else { // mix(Tex * K2, Tex, K3) + Lighting out << "lighting += lightMapTexel * lu.kColor2;"; } } // Next: Tex0TCG, Tex0, GX_COLOR1A1 // ZERO, TEX, KONST, RAS // Output reg prev // KColor 0 // Next: Tex1TCG, Tex1, GX_COLOR0A0 // ZERO, TEX, PREV, RAS // Output reg prev // Next: Tex2TCG, Tex2, GX_COLOR1A1 // ZERO, TEX, hasTex4 ? C2 : RAS, PREV // Output reg prev // (Tex0 * kColor0 + Lighting) * Tex1 + VertColor + Tex2 * Lighting if (info.m_hasPatternTex2) { if (info.m_hasPatternTex1) out << "colorOut = (patternTex1.sample(samp, vtf.uv0) * lu.kColor0 + lighting) * " "patternTex2.sample(samp, vtf.uv1) + vtf.color;"; else out << "colorOut = lighting * patternTex2.sample(samp, vtf.uv1) + vtf.color;"; } else { out << "colorOut = vtf.color;"; } if (info.m_hasColorTex) { if (info.m_hasEnvBumpMap) { // Make previous stage indirect, mtx0 fmt::print(out, FMT_STRING( "float2 indUvs = (envBumpMap.sample(samp, vtf.uv{}).ra - float2(0.5, 0.5)) * " "float2(lu.fog.indScale, -lu.fog.indScale);"), envBumpMapUv); out << "colorOut += colorTex.sample(samp, indUvs + vtf.uv2) * lighting;"; } else { out << "colorOut += colorTex.sample(samp, vtf.uv2) * lighting;"; } } break; case EFluidType::Lava: // 0: Tex0TCG, Tex0, GX_COLOR0A0 // ZERO, TEX, KONST, RAS // Output reg prev // KColor 0 // 1: Tex1TCG, Tex1, GX_COLOR0A0 // ZERO, TEX, PREV, RAS // Output reg prev // 2: Tex2TCG, Tex2, NULL // ZERO, TEX, ONE, PREV // Output reg prev // (Tex0 * kColor0 + VertColor) * Tex1 + VertColor + Tex2 if (info.m_hasPatternTex2) { if (info.m_hasPatternTex1) out << "colorOut = (patternTex1.sample(samp, vtf.uv0) * lu.kColor0 + vtf.color) * " "patternTex2.sample(samp, vtf.uv1) + vtf.color;"; else out << "colorOut = vtf.color * patternTex2.sample(samp, vtf.uv1) + vtf.color;"; } else { out << "colorOut = vtf.color;"; } if (info.m_hasColorTex) out << "colorOut += colorTex.sample(samp, vtf.uv2);"; if (info.m_hasBumpMap) { // 3: bumpMapTCG, bumpMap, NULL // ZERO, TEX, ONE, HALF // Output reg 0, no clamp, no bias // 4: bumpMapTCG2, bumpMap, NULL // ZERO, TEX, ONE, C0 // Output reg 0, subtract, clamp, no bias out << "float3 lightVec = lu.lights[3].pos.xyz - vtf.mvPos.xyz;" "float lx = dot(vtf.mvTangent.xyz, lightVec);" "float ly = dot(vtf.mvBinorm.xyz, lightVec);"; fmt::print(out, FMT_STRING( "float4 emboss1 = bumpMap.sample(samp, vtf.uv{}) + float4(0.5);" "float4 emboss2 = bumpMap.sample(samp, vtf.uv{} + float2(lx, ly));"), bumpMapUv, bumpMapUv); // 5: NULL, NULL, NULL // ZERO, PREV, C0, ZERO // Output reg prev, scale 2, clamp // colorOut * clamp(emboss1 + 0.5 - emboss2, 0.0, 1.0) * 2.0 out << "colorOut *= clamp((emboss1 + float4(0.5) - emboss2) * float4(2.0), float4(0.0), float4(1.0));"; } break; case EFluidType::ThickLava: // 0: Tex0TCG, Tex0, GX_COLOR0A0 // ZERO, TEX, KONST, RAS // Output reg prev // KColor 0 // 1: Tex1TCG, Tex1, GX_COLOR0A0 // ZERO, TEX, PREV, RAS // Output reg prev // 2: Tex2TCG, Tex2, NULL // ZERO, TEX, ONE, PREV // Output reg prev // (Tex0 * kColor0 + VertColor) * Tex1 + VertColor + Tex2 if (info.m_hasPatternTex2) { if (info.m_hasPatternTex1) out << "colorOut = (patternTex1.sample(samp, vtf.uv0) * lu.kColor0 + vtf.color) * " "patternTex2.sample(samp, vtf.uv1) + vtf.color;"; else out << "colorOut = vtf.color * patternTex2.sample(samp, vtf.uv1) + vtf.color;"; } else { out << "colorOut = vtf.color;"; } if (info.m_hasColorTex) out << "colorOut += colorTex.sample(samp, vtf.uv2);"; if (info.m_hasBumpMap) { // 3: bumpMapTCG, bumpMap, NULL // ZERO, TEX, PREV, ZERO // Output reg prev, scale 2 fmt::print(out, FMT_STRING("float4 emboss1 = bumpMap.sample(samp, vtf.uv{}) + float4(0.5);"), bumpMapUv); out << "colorOut *= emboss1 * float4(2.0);"; } break; } out << "colorOut.a = lu.kColor0.a;\n"; out << "#define IS_ADDITIVE " << int(info.m_additive) << '\n'; out << FS; return out.str(); } static void _BuildAdditionalTCGs(std::stringstream& out, const SFluidPlaneShaderInfo& info) { int nextTCG = 3; int nextMtx = 4; out << "#define ADDITIONAL_TCGS "; if (info.m_hasBumpMap) fmt::print(out, FMT_STRING("vtf.uv{} = (fu.texMtxs[0] * pos).xy;"), nextTCG++); if (info.m_hasEnvBumpMap) fmt::print(out, FMT_STRING("vtf.uv{} = (fu.texMtxs[3] * float4(normalIn.xyz, 1.0)).xy;"), nextTCG++); if (info.m_hasEnvMap) fmt::print(out, FMT_STRING("vtf.uv{} = (fu.texMtxs[{}] * pos).xy;"), nextTCG++, nextMtx++); if (info.m_hasLightmap) fmt::print(out, FMT_STRING("vtf.uv{} = (fu.texMtxs[{}] * pos).xy;"), nextTCG++, nextMtx++); out << '\n'; } static std::string _BuildVS(const SFluidPlaneShaderInfo& info, bool tessellation) { std::stringstream out; _BuildAdditionalTCGs(out, info); out << VS; return out.str(); } template <> std::string StageObject_CFluidPlaneShader::BuildShader( const SFluidPlaneShaderInfo& in, bool tessellation) { return _BuildVS(in, tessellation); } template <> std::string StageObject_CFluidPlaneShader::BuildShader( const SFluidPlaneShaderInfo& in, bool tessellation) { return _BuildFS(in); } template <> std::string StageObject_CFluidPlaneShader::BuildShader( const SFluidPlaneShaderInfo& in, bool tessellation) { return TessCS; } static std::string BuildES(const SFluidPlaneShaderInfo& info) { int nextTex = 0; if (info.m_hasPatternTex1) nextTex++; if (info.m_hasPatternTex2) nextTex++; if (info.m_hasColorTex) nextTex++; if (info.m_hasBumpMap) nextTex++; if (info.m_hasEnvMap) nextTex++; if (info.m_hasEnvBumpMap) nextTex++; if (info.m_hasLightmap) nextTex++; std::stringstream out; _BuildAdditionalTCGs(out, info); out << "#define RIPPLE_TEXTURE_IDX " << nextTex << '\n'; out << TessES; return out.str(); } template <> std::string StageObject_CFluidPlaneShader::BuildShader( const SFluidPlaneShaderInfo& in, bool tessellation) { return BuildES(in); } static std::string _BuildVS(const SFluidPlaneDoorShaderInfo& info) { std::stringstream out; out << "#define ADDITIONAL_TCGS\n"; out << VS; return out.str(); } static std::string _BuildFS(const SFluidPlaneDoorShaderInfo& info) { int nextTex = 0; std::stringstream out; out << "#define TEXTURE_PARAMS "; if (info.m_hasPatternTex1) fmt::print(out, FMT_STRING(",texture2d patternTex1 [[ texture({}) ]]"), nextTex++); if (info.m_hasPatternTex2) fmt::print(out, FMT_STRING(",texture2d patternTex2 [[ texture({}) ]]"), nextTex++); if (info.m_hasColorTex) fmt::print(out, FMT_STRING(",texture2d colorTex [[ texture({}) ]]"), nextTex++); out << '\n'; // Tex0 * kColor0 * Tex1 + Tex2 out << "#define COMBINER_EXPRS "; if (info.m_hasPatternTex1 && info.m_hasPatternTex2) { out << "colorOut = patternTex1.sample(samp, vtf.uv0) * lu.kColor0 * " "patternTex2.sample(samp, vtf.uv1);"; } else { out << "colorOut = float4(0.0);"; } if (info.m_hasColorTex) { out << "colorOut += colorTex.sample(samp, vtf.uv2);"; } out << "colorOut.a = lu.kColor0.a;\n"; out << "#define IS_ADDITIVE 0\n"; out << FSDoor; return out.str(); } template <> std::string StageObject_CFluidPlaneDoorShader::BuildShader( const SFluidPlaneDoorShaderInfo& in) { return _BuildVS(in); } template <> std::string StageObject_CFluidPlaneDoorShader::BuildShader( const SFluidPlaneDoorShaderInfo& in) { return _BuildFS(in); }