#include "ANCS.hpp" namespace DataSpec { extern hecl::Database::DataSpecEntry SpecEntMP1; extern hecl::Database::DataSpecEntry SpecEntMP1PC; namespace DNAMP1 { void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::read(athena::io::IStreamReader& reader) { parmType = reader.readUint32Big(); weightFunction = reader.readUint32Big(); weight = reader.readFloatBig(); switch (DataType(parmType)) { case DataType::Int32: range[0].int32 = reader.readInt32Big(); range[1].int32 = reader.readInt32Big(); break; case DataType::UInt32: case DataType::Enum: range[0].uint32 = reader.readUint32Big(); range[1].uint32 = reader.readUint32Big(); break; case DataType::Float: range[0].float32 = reader.readFloatBig(); range[1].float32 = reader.readFloatBig(); break; case DataType::Bool: range[0].bool1 = reader.readBool(); range[1].bool1 = reader.readBool(); break; } } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::write(athena::io::IStreamWriter& writer) const { writer.writeUint32Big(parmType); writer.writeUint32Big(weightFunction); writer.writeFloatBig(weight); switch (DataType(parmType)) { case DataType::Int32: writer.writeInt32Big(range[0].int32); writer.writeInt32Big(range[1].int32); break; case DataType::UInt32: case DataType::Enum: writer.writeUint32Big(range[0].uint32); writer.writeUint32Big(range[0].uint32); break; case DataType::Float: writer.writeFloatBig(range[0].float32); writer.writeFloatBig(range[0].float32); break; case DataType::Bool: writer.writeBool(range[0].bool1); writer.writeBool(range[0].bool1); break; } } size_t ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::binarySize(size_t __isz) const { __isz += 12; switch (DataType(parmType)) { case DataType::Int32: case DataType::UInt32: case DataType::Enum: case DataType::Float: __isz += 8; break; case DataType::Bool: __isz += 2; break; } return __isz; } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::read(athena::io::YAMLDocReader& reader) { parmType = reader.readUint32("parmType"); weightFunction = reader.readUint32("weightFunction"); weight = reader.readFloat("weight"); size_t parmValCount; if (auto v = reader.enterSubVector("range", parmValCount)) { switch (DataType(parmType)) { case DataType::Int32: range[0].int32 = reader.readInt32(nullptr); range[1].int32 = reader.readInt32(nullptr); break; case DataType::UInt32: case DataType::Enum: range[0].uint32 = reader.readUint32(nullptr); range[1].uint32 = reader.readUint32(nullptr); break; case DataType::Float: range[0].float32 = reader.readFloat(nullptr); range[1].float32 = reader.readFloat(nullptr); break; case DataType::Bool: range[0].bool1 = reader.readBool(nullptr); range[1].bool1 = reader.readBool(nullptr); break; default: break; } } } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::write(athena::io::YAMLDocWriter& writer) const { writer.writeUint32("parmType", parmType); writer.writeUint32("weightFunction", weightFunction); writer.writeFloat("weight", weight); if (auto v = writer.enterSubVector("range")) { switch (DataType(parmType)) { case DataType::Int32: writer.writeInt32(nullptr, range[0].int32); writer.writeInt32(nullptr, range[1].int32); break; case DataType::UInt32: case DataType::Enum: writer.writeUint32(nullptr, range[0].uint32); writer.writeUint32(nullptr, range[0].uint32); break; case DataType::Float: writer.writeFloat(nullptr, range[0].float32); writer.writeFloat(nullptr, range[0].float32); break; case DataType::Bool: writer.writeBool(nullptr, range[0].bool1); writer.writeBool(nullptr, range[0].bool1); break; } } } const char* ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::DNAType() { return "urde::DNAMP1::ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo"; } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::read(athena::io::IStreamReader& reader) { id = reader.readUint32Big(); atUint32 parmInfoCount = reader.readUint32Big(); atUint32 animInfoCount = reader.readUint32Big(); reader.enumerate(parmInfos, parmInfoCount); animInfos.clear(); animInfos.reserve(animInfoCount); reader.enumerate(animInfos, animInfoCount, [this, parmInfoCount](athena::io::IStreamReader& reader, AnimInfo& ai) { ai.id = reader.readUint32Big(); ai.parmVals.reserve(parmInfoCount); for (const ParmInfo& pi : parmInfos) { switch (ParmInfo::DataType(pi.parmType)) { case ParmInfo::DataType::Int32: ai.parmVals.emplace_back(reader.readInt32Big()); break; case ParmInfo::DataType::UInt32: case ParmInfo::DataType::Enum: ai.parmVals.emplace_back(reader.readUint32Big()); break; case ParmInfo::DataType::Float: ai.parmVals.emplace_back(reader.readFloatBig()); break; case ParmInfo::DataType::Bool: ai.parmVals.emplace_back(reader.readBool()); break; default: break; } } }); } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::write(athena::io::IStreamWriter& writer) const { writer.writeUint32Big(id); writer.writeUint32Big(parmInfos.size()); writer.writeUint32Big(animInfos.size()); for (const ParmInfo& pi : parmInfos) pi.write(writer); for (const AnimInfo& ai : animInfos) { writer.writeUint32Big(ai.id); auto it = ai.parmVals.begin(); for (const ParmInfo& pi : parmInfos) { ParmInfo::Parm pVal; if (it != ai.parmVals.end()) pVal = *it++; switch (ParmInfo::DataType(pi.parmType)) { case ParmInfo::DataType::Int32: writer.writeInt32Big(pVal.int32); break; case ParmInfo::DataType::UInt32: case ParmInfo::DataType::Enum: writer.writeUint32Big(pVal.uint32); break; case ParmInfo::DataType::Float: writer.writeFloatBig(pVal.float32); break; case ParmInfo::DataType::Bool: writer.writeBool(pVal.bool1); break; default: break; } } } } size_t ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::binarySize(size_t __isz) const { __isz += 12; __isz = __EnumerateSize(__isz, parmInfos); __isz += animInfos.size() * 4; for (const ParmInfo& pi : parmInfos) { switch (ParmInfo::DataType(pi.parmType)) { case ParmInfo::DataType::Int32: case ParmInfo::DataType::UInt32: case ParmInfo::DataType::Enum: case ParmInfo::DataType::Float: __isz += animInfos.size() * 4; break; case ParmInfo::DataType::Bool: __isz += animInfos.size(); break; default: break; } } return __isz; } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::read(athena::io::YAMLDocReader& reader) { id = reader.readUint32("id"); size_t parmInfoCount = reader.enumerate("parmInfos", parmInfos); reader.enumerate("animInfos", animInfos, [this, parmInfoCount](athena::io::YAMLDocReader& reader, AnimInfo& ai) { ai.id = reader.readUint32("id"); ai.parmVals.reserve(parmInfoCount); size_t parmValCount; if (auto v = reader.enterSubVector("parms", parmValCount)) { for (const ParmInfo& pi : parmInfos) { switch (ParmInfo::DataType(pi.parmType)) { case ParmInfo::DataType::Int32: ai.parmVals.emplace_back(reader.readInt32(nullptr)); break; case ParmInfo::DataType::UInt32: case ParmInfo::DataType::Enum: ai.parmVals.emplace_back(reader.readUint32(nullptr)); break; case ParmInfo::DataType::Float: ai.parmVals.emplace_back(reader.readFloat(nullptr)); break; case ParmInfo::DataType::Bool: ai.parmVals.emplace_back(reader.readBool(nullptr)); break; default: break; } } } }); } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::write(athena::io::YAMLDocWriter& writer) const { writer.writeUint32("id", id); writer.enumerate("parmInfos", parmInfos); writer.enumerate("animInfos", animInfos, [this](athena::io::YAMLDocWriter& writer, const AnimInfo& ai) { writer.writeUint32("id", ai.id); auto it = ai.parmVals.begin(); if (auto v = writer.enterSubVector("parms")) { for (const ParmInfo& pi : parmInfos) { ParmInfo::Parm pVal; if (it != ai.parmVals.end()) pVal = *it++; switch (ParmInfo::DataType(pi.parmType)) { case ParmInfo::DataType::Int32: writer.writeInt32(nullptr, pVal.int32); break; case ParmInfo::DataType::UInt32: case ParmInfo::DataType::Enum: writer.writeUint32(nullptr, pVal.uint32); break; case ParmInfo::DataType::Float: writer.writeFloat(nullptr, pVal.float32); break; case ParmInfo::DataType::Bool: writer.writeBool(nullptr, pVal.bool1); break; default: break; } } } }); } const char* ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::DNAType() { return "urde::DNAMP1::ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState"; } void ANCS::CharacterSet::CharacterInfo::read(athena::io::IStreamReader& reader) { idx = reader.readUint32Big(); atUint16 sectionCount = reader.readUint16Big(); name = reader.readString(); cmdl.read(reader); cskr.read(reader); cinf.read(reader); atUint32 animationCount = reader.readUint32Big(); reader.enumerate(animations, animationCount); pasDatabase.read(reader); atUint32 partCount = reader.readUint32Big(); reader.enumerate(partResData.part, partCount); atUint32 swhcCount = reader.readUint32Big(); reader.enumerate(partResData.swhc, swhcCount); atUint32 unkCount = reader.readUint32Big(); reader.enumerate(partResData.unk, unkCount); partResData.elsc.clear(); if (sectionCount > 5) { atUint32 elscCount = reader.readUint32Big(); reader.enumerate(partResData.elsc, elscCount); } unk1 = reader.readUint32Big(); animAABBs.clear(); if (sectionCount > 1) { atUint32 aabbCount = reader.readUint32Big(); reader.enumerate(animAABBs, aabbCount); } effects.clear(); if (sectionCount > 2) { atUint32 effectCount = reader.readUint32Big(); reader.enumerate(effects, effectCount); } if (sectionCount > 3) { cmdlOverlay.read(reader); cskrOverlay.read(reader); } animIdxs.clear(); if (sectionCount > 4) { atUint32 aidxCount = reader.readUint32Big(); reader.enumerateBig(animIdxs, aidxCount); } } void ANCS::CharacterSet::CharacterInfo::write(athena::io::IStreamWriter& writer) const { writer.writeUint32Big(idx); atUint16 sectionCount; if (partResData.elsc.size()) sectionCount = 6; else if (animIdxs.size()) sectionCount = 5; else if (cmdlOverlay) sectionCount = 4; else if (effects.size()) sectionCount = 3; else if (animAABBs.size()) sectionCount = 2; else sectionCount = 1; writer.writeUint16Big(sectionCount); writer.writeString(name); cmdl.UniqueID32::write(writer); cskr.UniqueID32::write(writer); cinf.UniqueID32::write(writer); writer.writeUint32Big(animations.size()); writer.enumerate(animations); pasDatabase.write(writer); writer.writeUint32Big(partResData.part.size()); writer.enumerate(partResData.part); writer.writeUint32Big(partResData.swhc.size()); writer.enumerate(partResData.swhc); writer.writeUint32Big(partResData.unk.size()); writer.enumerate(partResData.unk); if (sectionCount > 5) { writer.writeUint32Big(partResData.elsc.size()); writer.enumerate(partResData.elsc); } writer.writeUint32Big(unk1); if (sectionCount > 1) { writer.writeUint32Big(animAABBs.size()); writer.enumerate(animAABBs); } if (sectionCount > 2) { writer.writeUint32Big(effects.size()); writer.enumerate(effects); } if (sectionCount > 3) { cmdlOverlay.UniqueID32::write(writer); cskrOverlay.UniqueID32::write(writer); } if (sectionCount > 4) { writer.writeUint32Big(animIdxs.size()); for (atUint32 idx : animIdxs) writer.writeUint32Big(idx); } } size_t ANCS::CharacterSet::CharacterInfo::binarySize(size_t __isz) const { __isz += 6; atUint16 sectionCount; if (partResData.elsc.size()) sectionCount = 6; else if (animIdxs.size()) sectionCount = 5; else if (cmdlOverlay) sectionCount = 4; else if (effects.size()) sectionCount = 3; else if (animAABBs.size()) sectionCount = 2; else sectionCount = 1; __isz += name.size() + 1; __isz += 12; __isz += 4; __isz = __EnumerateSize(__isz, animations); __isz = pasDatabase.binarySize(__isz); __isz += 4; __isz = __EnumerateSize(__isz, partResData.part); __isz += 4; __isz = __EnumerateSize(__isz, partResData.swhc); __isz += 4; __isz = __EnumerateSize(__isz, partResData.unk); if (sectionCount > 5) { __isz += 4; __isz = __EnumerateSize(__isz, partResData.elsc); } __isz += 4; if (sectionCount > 1) { __isz += 4; __isz = __EnumerateSize(__isz, animAABBs); } if (sectionCount > 2) { __isz += 4; __isz = __EnumerateSize(__isz, effects); } if (sectionCount > 3) __isz += 8; if (sectionCount > 4) __isz += 4 + animIdxs.size() * 4; return __isz; } void ANCS::CharacterSet::CharacterInfo::read(athena::io::YAMLDocReader& reader) { idx = reader.readUint32("idx"); atUint16 sectionCount = reader.readUint16("sectionCount"); name = reader.readString("name"); reader.enumerate("cmdl", cmdl); reader.enumerate("animations", animations); reader.enumerate("pasDatabase", pasDatabase); reader.enumerate("part", partResData.part); reader.enumerate("swhc", partResData.swhc); reader.enumerate("unk", partResData.unk); partResData.elsc.clear(); if (sectionCount > 5) { reader.enumerate("elsc", partResData.elsc); } unk1 = reader.readUint32("unk1"); animAABBs.clear(); if (sectionCount > 1) { reader.enumerate("part", animAABBs); } effects.clear(); if (sectionCount > 2) { reader.enumerate("effects", effects); } if (sectionCount > 3) { reader.enumerate("cmdlOverride", cmdlOverlay); } animIdxs.clear(); if (sectionCount > 4) { reader.enumerate("animIdxs", animIdxs); } } void ANCS::CharacterSet::CharacterInfo::write(athena::io::YAMLDocWriter& writer) const { writer.writeUint32("idx", idx); atUint16 sectionCount; if (partResData.elsc.size()) sectionCount = 6; else if (animIdxs.size()) sectionCount = 5; else if (cmdlOverlay) sectionCount = 4; else if (effects.size()) sectionCount = 3; else if (animAABBs.size()) sectionCount = 2; else sectionCount = 1; writer.writeUint16("sectionCount", sectionCount); writer.writeString("name", name); writer.enumerate("cmdl", cmdl); writer.enumerate("animations", animations); writer.enumerate("pasDatabase", pasDatabase); writer.enumerate("part", partResData.part); writer.enumerate("swhc", partResData.swhc); writer.enumerate("unk", partResData.unk); if (sectionCount > 5) { writer.enumerate("elsc", partResData.elsc); } writer.writeUint32("unk1", unk1); if (sectionCount > 1) { writer.enumerate("animAABBs", animAABBs); } if (sectionCount > 2) { writer.enumerate("effects", effects); } if (sectionCount > 3) { writer.enumerate("cmdlOverride", cmdlOverlay); } if (sectionCount > 4) { writer.enumerate("animIdxs", animIdxs); } } const char* ANCS::CharacterSet::CharacterInfo::DNAType() { return "urde::DNAMP1::ANCS::CharacterSet::CharacterInfo"; } void ANCS::AnimationSet::MetaAnimFactory::read(athena::io::IStreamReader& reader) { IMetaAnim::Type type(IMetaAnim::Type(reader.readUint32Big())); switch (type) { case IMetaAnim::Type::Primitive: m_anim.reset(new struct MetaAnimPrimitive); m_anim->read(reader); break; case IMetaAnim::Type::Blend: m_anim.reset(new struct MetaAnimBlend); m_anim->read(reader); break; case IMetaAnim::Type::PhaseBlend: m_anim.reset(new struct MetaAnimPhaseBlend); m_anim->read(reader); break; case IMetaAnim::Type::Random: m_anim.reset(new struct MetaAnimRandom); m_anim->read(reader); break; case IMetaAnim::Type::Sequence: m_anim.reset(new struct MetaAnimSequence); m_anim->read(reader); break; default: m_anim.reset(nullptr); break; } } void ANCS::AnimationSet::MetaAnimFactory::write(athena::io::IStreamWriter& writer) const { if (!m_anim) return; writer.writeInt32Big(atUint32(m_anim->m_type)); m_anim->write(writer); } size_t ANCS::AnimationSet::MetaAnimFactory::binarySize(size_t __isz) const { if (!m_anim) return __isz; return m_anim->binarySize(__isz + 4); } void ANCS::AnimationSet::MetaAnimFactory::read(athena::io::YAMLDocReader& reader) { std::string type = reader.readString("type"); std::transform(type.begin(), type.end(), type.begin(), tolower); if (!type.compare("primitive")) { m_anim.reset(new struct MetaAnimPrimitive); m_anim->read(reader); } else if (!type.compare("blend")) { m_anim.reset(new struct MetaAnimBlend); m_anim->read(reader); } else if (!type.compare("phaseblend")) { m_anim.reset(new struct MetaAnimPhaseBlend); m_anim->read(reader); } else if (!type.compare("random")) { m_anim.reset(new struct MetaAnimRandom); m_anim->read(reader); } else if (!type.compare("sequence")) { m_anim.reset(new struct MetaAnimSequence); m_anim->read(reader); } else { m_anim.reset(nullptr); } } void ANCS::AnimationSet::MetaAnimFactory::write(athena::io::YAMLDocWriter& writer) const { if (!m_anim) return; writer.writeString("type", m_anim->m_typeStr); m_anim->write(writer); } const char* ANCS::AnimationSet::MetaAnimFactory::DNAType() { return "urde::DNAMP1::ANCS::AnimationSet::MetaAnimFactory"; } void ANCS::AnimationSet::MetaTransFactory::read(athena::io::IStreamReader& reader) { IMetaTrans::Type type(IMetaTrans::Type(reader.readUint32Big())); switch (type) { case IMetaTrans::Type::MetaAnim: m_trans.reset(new struct MetaTransMetaAnim); m_trans->read(reader); break; case IMetaTrans::Type::Trans: m_trans.reset(new struct MetaTransTrans); m_trans->read(reader); break; case IMetaTrans::Type::PhaseTrans: m_trans.reset(new struct MetaTransPhaseTrans); m_trans->read(reader); break; case IMetaTrans::Type::NoTrans: default: m_trans.reset(nullptr); break; } } void ANCS::AnimationSet::MetaTransFactory::write(athena::io::IStreamWriter& writer) const { if (!m_trans) { writer.writeInt32Big(atUint32(IMetaTrans::Type::NoTrans)); return; } writer.writeInt32Big(atUint32(m_trans->m_type)); m_trans->write(writer); } size_t ANCS::AnimationSet::MetaTransFactory::binarySize(size_t __isz) const { if (!m_trans) return __isz + 4; return m_trans->binarySize(__isz + 4); } void ANCS::AnimationSet::MetaTransFactory::read(athena::io::YAMLDocReader& reader) { std::string type = reader.readString("type"); std::transform(type.begin(), type.end(), type.begin(), tolower); if (!type.compare("metaanim")) { m_trans.reset(new struct MetaTransMetaAnim); m_trans->read(reader); } else if (!type.compare("trans")) { m_trans.reset(new struct MetaTransTrans); m_trans->read(reader); } else if (!type.compare("phasetrans")) { m_trans.reset(new struct MetaTransPhaseTrans); m_trans->read(reader); } else { m_trans.reset(nullptr); } } void ANCS::AnimationSet::MetaTransFactory::write(athena::io::YAMLDocWriter& writer) const { if (!m_trans) { writer.writeString("type", "NoTrans"); return; } writer.writeString("type", m_trans->m_typeStr?m_trans->m_typeStr:"NoTrans"); m_trans->write(writer); } const char* ANCS::AnimationSet::MetaTransFactory::DNAType() { return "urde::DNAMP1::ANCS::AnimationSet::MetaTransFactory"; } void ANCS::AnimationSet::read(athena::io::IStreamReader& reader) { atUint16 sectionCount = reader.readUint16Big(); atUint32 animationCount = reader.readUint32Big(); reader.enumerate(animations, animationCount); atUint32 transitionCount = reader.readUint32Big(); reader.enumerate(transitions, transitionCount); defaultTransition.read(reader); additiveAnims.clear(); if (sectionCount > 1) { atUint32 additiveAnimCount = reader.readUint32Big(); reader.enumerate(additiveAnims, additiveAnimCount); floatA = reader.readFloatBig(); floatB = reader.readFloatBig(); } halfTransitions.clear(); if (sectionCount > 2) { atUint32 halfTransitionCount = reader.readUint32Big(); reader.enumerate(halfTransitions, halfTransitionCount); } animResources.clear(); if (sectionCount > 3) { atUint32 animResourcesCount = reader.readUint32Big(); reader.enumerate(animResources, animResourcesCount); } } void ANCS::AnimationSet::write(athena::io::IStreamWriter& writer) const { atUint16 sectionCount; if (animResources.size()) sectionCount = 4; else if (halfTransitions.size()) sectionCount = 3; else if (additiveAnims.size()) sectionCount = 2; else sectionCount = 1; writer.writeUint16Big(sectionCount); writer.writeUint32Big(animations.size()); writer.enumerate(animations); writer.writeUint32Big(transitions.size()); writer.enumerate(transitions); defaultTransition.write(writer); if (sectionCount > 1) { writer.writeUint32Big(additiveAnims.size()); writer.enumerate(additiveAnims); writer.writeFloatBig(floatA); writer.writeFloatBig(floatB); } if (sectionCount > 2) { writer.writeUint32Big(halfTransitions.size()); writer.enumerate(halfTransitions); } if (sectionCount > 3) { writer.writeUint32Big(animResources.size()); writer.enumerate(animResources); } } size_t ANCS::AnimationSet::binarySize(size_t __isz) const { atUint16 sectionCount; if (animResources.size()) sectionCount = 4; else if (halfTransitions.size()) sectionCount = 3; else if (additiveAnims.size()) sectionCount = 2; else sectionCount = 1; __isz += 6; __isz = __EnumerateSize(__isz, animations); __isz += 4; __isz = __EnumerateSize(__isz, transitions); __isz = defaultTransition.binarySize(__isz); if (sectionCount > 1) { __isz += 4; __isz = __EnumerateSize(__isz, additiveAnims); __isz += 8; } if (sectionCount > 2) { __isz += 4; __isz = __EnumerateSize(__isz, halfTransitions); } if (sectionCount > 3) { __isz += 4; __isz = __EnumerateSize(__isz, animResources); } return __isz; } void ANCS::AnimationSet::read(athena::io::YAMLDocReader& reader) { atUint16 sectionCount = reader.readUint16("sectionCount"); reader.enumerate("animations", animations); reader.enumerate("transitions", transitions); reader.enumerate("defaultTransition", defaultTransition); additiveAnims.clear(); if (sectionCount > 1) { reader.enumerate("additiveAnims", additiveAnims); floatA = reader.readFloat("floatA"); floatB = reader.readFloat("floatB"); } halfTransitions.clear(); if (sectionCount > 2) { reader.enumerate("halfTransitions", halfTransitions); } animResources.clear(); if (sectionCount > 3) { reader.enumerate("animResources", animResources); } } void ANCS::AnimationSet::write(athena::io::YAMLDocWriter& writer) const { atUint16 sectionCount; if (animResources.size()) sectionCount = 4; else if (halfTransitions.size()) sectionCount = 3; else if (additiveAnims.size()) sectionCount = 2; else sectionCount = 1; writer.writeUint16("sectionCount", sectionCount); writer.enumerate("animations", animations); writer.enumerate("transitions", transitions); writer.enumerate("defaultTransition", defaultTransition); if (sectionCount > 1) { writer.enumerate("additiveAnims", additiveAnims); writer.writeFloat("floatA", floatA); writer.writeFloat("floatB", floatB); } if (sectionCount > 2) { writer.enumerate("halfTransitions", halfTransitions); } if (sectionCount > 3) { writer.enumerate("animResources", animResources); } } const char* ANCS::AnimationSet::DNAType() { return "urde::DNAMP1::ANCS::AnimationSet"; } bool ANCS::Extract(const SpecBase& dataSpec, PAKEntryReadStream& rs, const hecl::ProjectPath& outPath, PAKRouter& pakRouter, const PAK::Entry& entry, bool force, hecl::BlenderToken& btok, std::function fileChanged) { hecl::ProjectPath yamlPath = outPath.getWithExtension(_S(".yaml"), true); hecl::ProjectPath::Type yamlType = yamlPath.getPathType(); hecl::ProjectPath blendPath = outPath.getWithExtension(_S(".blend"), true); hecl::ProjectPath::Type blendType = blendPath.getPathType(); ANCS ancs; ancs.read(rs); if (force || yamlType == hecl::ProjectPath::Type::None || blendType == hecl::ProjectPath::Type::None) { if (force || yamlType == hecl::ProjectPath::Type::None) { athena::io::FileWriter writer(yamlPath.getAbsolutePath()); ancs.toYAMLStream(writer); } if (force || blendType == hecl::ProjectPath::Type::None) { hecl::BlenderConnection& conn = btok.getBlenderConnection(); DNAANCS::ReadANCSToBlender, ANCS, MaterialSet, DNACMDL::SurfaceHeader_1, 2> (conn, ancs, blendPath, pakRouter, entry, dataSpec, fileChanged, force); } } /* Extract EVNTs */ std::map> animRes; ancs.getAnimationResInfo(animRes); for (const auto& res : animRes) { if (res.second.evntId) { hecl::SystemStringConv sysStr(res.second.name); hecl::ProjectPath evntYamlPath = outPath.getWithExtension((hecl::SystemString(_S(".")) + sysStr.c_str() + _S(".evnt.yaml")).c_str(), true); hecl::ProjectPath::Type evntYamlType = evntYamlPath.getPathType(); if (force || evntYamlType == hecl::ProjectPath::Type::None) { EVNT evnt; if (pakRouter.lookupAndReadDNA(res.second.evntId, evnt, true)) { athena::io::FileWriter writer(evntYamlPath.getAbsolutePath()); evnt.toYAMLStream(writer); } } } } return true; } bool ANCS::Cook(const hecl::ProjectPath& outPath, const hecl::ProjectPath& inPath, const DNAANCS::Actor& actor) { /* Search for yaml */ hecl::ProjectPath yamlPath = inPath.getWithExtension(_S(".yaml"), true); if (!yamlPath.isFile()) Log.report(logvisor::Fatal, _S("'%s' not found as file"), yamlPath.getRelativePath().data()); athena::io::FileReader reader(yamlPath.getAbsolutePath()); if (!reader.isOpen()) Log.report(logvisor::Fatal, _S("can't open '%s' for reading"), yamlPath.getRelativePath().data()); if (!BigYAML::ValidateFromYAMLStream(reader)) { Log.report(logvisor::Fatal, _S("'%s' is not urde::DNAMP1::ANCS type"), yamlPath.getRelativePath().data()); } athena::io::YAMLDocReader yamlReader; if (!yamlReader.parse(&reader)) { Log.report(logvisor::Fatal, _S("unable to parse '%s'"), yamlPath.getRelativePath().data()); } ANCS ancs; ancs.read(yamlReader); /* Set Character Resource IDs */ for (ANCS::CharacterSet::CharacterInfo& ch : ancs.characterSet.characters) { ch.cmdl = UniqueID32{}; ch.cskr = UniqueID32{}; ch.cinf = UniqueID32{}; ch.cmdlOverlay = UniqueID32{}; ch.cskrOverlay = UniqueID32{}; hecl::SystemStringConv chSysName(ch.name); ch.cskr = inPath.ensureAuxInfo(hecl::SystemString(chSysName.sys_str()) + _S(".CSKR")); for (const DNAANCS::Actor::Subtype& sub : actor.subtypes) { if (!sub.name.compare(ch.name)) { if (sub.armature >= 0) { const DNAANCS::Actor::Armature& arm = actor.armatures[sub.armature]; hecl::SystemStringConv armSysName(arm.name); ch.cinf = inPath.ensureAuxInfo(hecl::SystemString(armSysName.sys_str()) + _S(".CINF")); ch.cmdl = sub.mesh; if (sub.overlayMeshes.size()) { hecl::SystemStringConv overlaySys(sub.overlayMeshes[0].first); ch.cmdlOverlay = sub.overlayMeshes[0].second; ch.cskrOverlay = inPath.ensureAuxInfo(hecl::SystemString(chSysName.sys_str()) + _S('.') + overlaySys.c_str() + _S(".CSKR")); } break; } } } } /* Set Animation Resource IDs */ ancs.enumeratePrimitives([&](AnimationSet::MetaAnimPrimitive& prim) -> bool { hecl::SystemStringConv sysStr(prim.animName); hecl::ProjectPath pathOut = inPath.ensureAuxInfo(hecl::SystemString(sysStr.sys_str()) + _S(".ANIM")); prim.animId = pathOut; return true; }); /* Gather ANIM resources */ ancs.animationSet.animResources.reserve(actor.actions.size()); for (const DNAANCS::Actor::Action& act : actor.actions) { hecl::SystemStringConv sysStr(act.name); hecl::ProjectPath pathOut = inPath.ensureAuxInfo(hecl::SystemString(sysStr.sys_str()) + _S(".ANIM")); ancs.animationSet.animResources.emplace_back(); ancs.animationSet.animResources.back().animId = pathOut; /* Check for associated EVNT YAML */ hecl::ProjectPath evntYamlPath = inPath.getWithExtension((hecl::SystemString(_S(".")) + sysStr.c_str() + _S(".evnt.yaml")).c_str(), true); evntYamlPath = evntYamlPath.ensureAuxInfo(_S("")); if (evntYamlPath.isFile()) ancs.animationSet.animResources.back().evntId = evntYamlPath; } /* Write out ANCS */ athena::io::TransactionalFileWriter w(outPath.getAbsolutePath()); ancs.write(w); return true; } bool ANCS::CookCINF(const hecl::ProjectPath& outPath, const hecl::ProjectPath& inPath, const DNAANCS::Actor& actor) { hecl::SystemString armName(inPath.getAuxInfo().begin(), inPath.getAuxInfo().end() - 5); for (const DNAANCS::Actor::Armature& arm : actor.armatures) { hecl::SystemStringConv sysStr(arm.name); if (sysStr.sys_str() == armName) { std::unordered_map boneIdMap; CINF cinf(arm, boneIdMap); /* Write out CINF resource */ athena::io::TransactionalFileWriter w(outPath.getAbsolutePath()); cinf.write(w); return true; } } return false; } bool ANCS::CookCSKR(const hecl::ProjectPath& outPath, const hecl::ProjectPath& inPath, const DNAANCS::Actor& actor, const std::function& modelCookFunc) { hecl::SystemString subName(inPath.getAuxInfo().begin(), inPath.getAuxInfo().end() - 5); hecl::SystemString overName; auto dotPos = subName.rfind(_S('.')); if (dotPos != hecl::SystemString::npos) { overName = hecl::SystemString(subName.begin() + dotPos + 1, subName.end()); subName = hecl::SystemString(subName.begin(), subName.begin() + dotPos); } hecl::SystemUTF8Conv subNameView(subName); hecl::SystemUTF8Conv overNameView(overName); /* Build bone ID map */ std::unordered_map boneIdMap; for (const DNAANCS::Actor::Armature& arm : actor.armatures) { CINF cinf(arm, boneIdMap); } const DNAANCS::Actor::Subtype* subtype = nullptr; for (const DNAANCS::Actor::Subtype& sub : actor.subtypes) { if (!sub.name.compare(subNameView.str())) { subtype = ⊂ break; } } if (!subtype) Log.report(logvisor::Fatal, _S("unable to find subtype '%s'"), subName.c_str()); const hecl::ProjectPath* modelPath = nullptr; if (overName.empty()) { modelPath = &subtype->mesh; } else { for (const auto& overlay : subtype->overlayMeshes) if (!overlay.first.compare(overNameView.str())) { modelPath = &overlay.second; break; } } if (!modelPath) Log.report(logvisor::Fatal, _S("unable to resolve model path of %s:%s"), subName.c_str(), overName.c_str()); if (!modelPath->isFile()) Log.report(logvisor::Fatal, _S("unable to resolve '%s'"), modelPath->getRelativePath().data()); hecl::ProjectPath skinIntPath = modelPath->getCookedPath(SpecEntMP1PC).getWithExtension(_S(".skinint")); if (!skinIntPath.isFileOrGlob() || skinIntPath.getModtime() < modelPath->getModtime()) if (!modelCookFunc(*modelPath)) Log.report(logvisor::Fatal, _S("unable to cook '%s'"), modelPath->getRelativePath().data()); athena::io::FileReader skinIO(skinIntPath.getAbsolutePath(), 1024*32, false); if (skinIO.hasError()) Log.report(logvisor::Fatal, _S("unable to open '%s'"), skinIntPath.getRelativePath().data()); std::vector> skinBanks; uint32_t bankCount = skinIO.readUint32Big(); skinBanks.reserve(bankCount); for (uint32_t i=0 ; i& bonesOut = skinBanks.back(); uint32_t boneCount = skinIO.readUint32Big(); bonesOut.reserve(boneCount); for (uint32_t j=0 ; j boneNames; uint32_t boneNameCount = skinIO.readUint32Big(); boneNames.reserve(boneNameCount); for (uint32_t i=0 ; i>> skins; uint32_t skinCount = skinIO.readUint32Big(); skins.resize(skinCount); for (uint32_t i=0 ; i>& virtualBone = skins[i]; uint32_t bindCount = skinIO.readUint32Big(); virtualBone.reserve(bindCount); for (uint32_t j=0 ; jsecond, weight); } } atUint64 uniquePoolIndexLen = skinIO.length() - skinIO.position(); auto uniquePoolIndexData = skinIO.readUBytes(uniquePoolIndexLen); skinIO.close(); athena::io::TransactionalFileWriter skinOut(outPath.getAbsolutePath()); skinOut.writeUint32Big(bankCount); for (const std::vector& bank : skinBanks) { skinOut.writeUint32Big(bank.size()); for (uint32_t bIdx : bank) { const std::string& name = boneNames[bIdx]; auto search = boneIdMap.find(name); if (search == boneIdMap.cend()) Log.report(logvisor::Fatal, "unable to find bone '%s' in %s", name.c_str(), inPath.getRelativePathUTF8().data()); skinOut.writeUint32Big(search->second); } } skinOut.writeUint32Big(skins.size()); for (auto& virtuaBone : skins) { skinOut.writeUint32Big(virtuaBone.size()); for (auto& bind : virtuaBone) { skinOut.writeUint32Big(bind.first); skinOut.writeFloatBig(bind.second); } } skinOut.writeUBytes(uniquePoolIndexData.get(), uniquePoolIndexLen); return true; } bool ANCS::CookANIM(const hecl::ProjectPath& outPath, const hecl::ProjectPath& inPath, const DNAANCS::Actor& actor, hecl::BlenderConnection::DataStream& ds, bool pc) { hecl::SystemString actName(inPath.getAuxInfo().begin(), inPath.getAuxInfo().end() - 5); hecl::SystemUTF8Conv actNameView(actName); DNAANCS::Actor::Action action = ds.compileActionChannelsOnly(actNameView.str()); if (!actor.armatures.size()) Log.report(logvisor::Fatal, _S("0 armatures in %s"), inPath.getRelativePath().data()); /* Build bone ID map */ std::unordered_map boneIdMap; std::experimental::optional rigCinf; std::experimental::optional> rigInv; for (const DNAANCS::Actor::Armature& arm : actor.armatures) { if (!rigInv) { rigCinf.emplace(arm, boneIdMap); auto matrices = ds.getBoneMatrices(arm.name); rigInv.emplace(*rigCinf, matrices); } else { CINF cinf(arm, boneIdMap); } } ANIM anim(action, boneIdMap, *rigInv, pc); /* Check for associated EVNT YAML */ hecl::ProjectPath evntYamlPath = inPath.getWithExtension((hecl::SystemString(_S(".")) + actName + _S(".evnt.yaml")).c_str(), true); evntYamlPath = evntYamlPath.ensureAuxInfo(_S("")); if (evntYamlPath.isFile()) anim.m_anim->evnt = evntYamlPath; /* Write out ANIM resource */ athena::io::TransactionalFileWriter w(outPath.getAbsolutePath()); anim.write(w); return true; } } }