#include #include #include "MREA.hpp" #include "SCLY.hpp" #include "PATH.hpp" #include "DeafBabe.hpp" #include "../DNACommon/BabeDead.hpp" #include "zeus/Math.hpp" #include "zeus/CAABox.hpp" #include "DataSpec/DNACommon/AROTBuilder.hpp" #include "ScriptObjects/ScriptTypes.hpp" extern hecl::SystemString ExeDir; namespace DataSpec { namespace DNAMP1 { void MREA::ReadBabeDeadToBlender_1_2(hecl::BlenderConnection::PyOutStream& os, athena::io::IStreamReader& rs) { atUint32 bdMagic = rs.readUint32Big(); if (bdMagic != 0xBABEDEAD) Log.report(logvisor::Fatal, "invalid BABEDEAD magic"); os << "bpy.context.scene.render.engine = 'CYCLES'\n" "bpy.context.scene.world.use_nodes = True\n" "bpy.context.scene.render.engine = 'BLENDER_GAME'\n" "bg_node = bpy.context.scene.world.node_tree.nodes['Background']\n"; for (atUint32 s=0 ; s<2 ; ++s) { atUint32 lightCount = rs.readUint32Big(); for (atUint32 l=0 ; l& pakRouter, std::unordered_map>& addTo) { /* Do extract */ Header head; head.read(rs); rs.seekAlign32(); /* Skip to SCLY */ atUint32 curSec = 0; atUint64 secStart = rs.position(); while (curSec != head.sclySecIdx) secStart += head.secSizes[curSec++]; rs.seek(secStart, athena::Begin); SCLY scly; scly.read(rs); scly.addCMDLRigPairs(pakRouter, addTo); } /* Collision octree dumper */ static void OutputOctreeNode(hecl::BlenderConnection::PyOutStream& os, athena::io::MemoryReader& r, BspNodeType type, const zeus::CAABox& aabb) { if (type == BspNodeType::Branch) { u16 flags = r.readUint16Big(); r.readUint16Big(); u32 offsets[8]; for (int i=0 ; i<8 ; ++i) offsets[i] = r.readUint32Big(); u32 dataStart = r.position(); for (int i=0 ; i<8 ; ++i) { r.seek(dataStart + offsets[i], athena::Begin); int chFlags = (flags >> (i * 2)) & 0x3; zeus::CAABox pos, neg, res; aabb.splitZ(neg, pos); if (i & 4) { zeus::CAABox(pos).splitY(neg, pos); if (i & 2) { zeus::CAABox(pos).splitX(neg, pos); if (i & 1) res = pos; else res = neg; } else { zeus::CAABox(neg).splitX(neg, pos); if (i & 1) res = pos; else res = neg; } } else { zeus::CAABox(neg).splitY(neg, pos); if (i & 2) { zeus::CAABox(pos).splitX(neg, pos); if (i & 1) res = pos; else res = neg; } else { zeus::CAABox(neg).splitX(neg, pos); if (i & 1) res = pos; else res = neg; } } OutputOctreeNode(os, r, BspNodeType(chFlags), res); } } else if (type == BspNodeType::Leaf) { zeus::CVector3f pos = aabb.center(); zeus::CVector3f extent = aabb.extents(); os.format("obj = bpy.data.objects.new('Leaf', None)\n" "bpy.context.scene.objects.link(obj)\n" "obj.location = (%f,%f,%f)\n" "obj.scale = (%f,%f,%f)\n" "obj.empty_draw_type = 'CUBE'\n" "obj.layers[1] = True\n" "obj.layers[0] = False\n", pos.x, pos.y, pos.z, extent.x, extent.y, extent.z); } } static const uint32_t AROTChildCounts[] = { 0, 2, 2, 4, 2, 4, 4, 8 }; /* AROT octree dumper */ static void OutputOctreeNode(hecl::BlenderConnection::PyOutStream& os, athena::io::MemoryReader& r, const zeus::CAABox& aabb) { r.readUint16Big(); u16 flags = r.readUint16Big(); if (flags) { u32 childCount = AROTChildCounts[flags]; r.seek(2 * childCount); zeus::CAABox Z[2] = {aabb}; if ((flags & 0x1) != 0) aabb.splitZ(Z[0], Z[1]); for (int k=0 ; k < 1 + ((flags & 0x1) != 0) ; ++k) { zeus::CAABox Y[2] = {Z[0]}; if ((flags & 0x2) != 0) Z[k].splitY(Y[0], Y[1]); for (int j=0 ; j < 1 + ((flags & 0x2) != 0) ; ++j) { zeus::CAABox X[2] = {Y[0]}; if ((flags & 0x4) != 0) Y[j].splitX(X[0], X[1]); for (int i=0 ; i < 1 + ((flags & 0x4) != 0) ; ++i) { OutputOctreeNode(os, r, X[i]); } } } } else { zeus::CVector3f pos = aabb.center(); zeus::CVector3f extent = aabb.extents(); os.format("obj = bpy.data.objects.new('Leaf', None)\n" "bpy.context.scene.objects.link(obj)\n" "obj.location = (%f,%f,%f)\n" "obj.scale = (%f,%f,%f)\n" "obj.empty_draw_type = 'CUBE'\n" "obj.layers[1] = True\n" "obj.layers[0] = False\n", pos.x, pos.y, pos.z, extent.x, extent.y, extent.z); } } bool MREA::Extract(const SpecBase& dataSpec, PAKEntryReadStream& rs, const hecl::ProjectPath& outPath, PAKRouter& pakRouter, const PAK::Entry& entry, bool force, hecl::BlenderToken& btok, std::function) { using RigPair = std::pair; RigPair dummy(nullptr, nullptr); if (!force && outPath.isFile()) return true; /* Do extract */ Header head; head.read(rs); rs.seekAlign32(); hecl::BlenderConnection& conn = btok.getBlenderConnection(); if (!conn.createBlend(outPath, hecl::BlenderConnection::BlendType::Area)) return false; /* Open Py Stream and read sections */ hecl::BlenderConnection::PyOutStream os = conn.beginPythonOut(true); os.format("import bpy\n" "import bmesh\n" "from mathutils import Vector\n" "\n" "bpy.context.scene.name = '%s'\n", pakRouter.getBestEntryName(entry, false).c_str()); DNACMDL::InitGeomBlenderContext(os, dataSpec.getMasterShaderPath(), true); MaterialSet::RegisterMaterialProps(os); os << "# Clear Scene\n" "for ob in bpy.data.objects:\n" " if ob.type != 'CAMERA':\n" " bpy.context.scene.objects.unlink(ob)\n" " bpy.data.objects.remove(ob)\n" "bpy.types.Lamp.retro_layer = bpy.props.IntProperty(name='Retro: Light Layer')\n" "bpy.types.Lamp.retro_origtype = bpy.props.IntProperty(name='Retro: Original Type')\n" "bpy.types.Object.retro_disable_enviro_visor = bpy.props.BoolProperty(name='Retro: Disable in Combat/Scan Visor')\n" "bpy.types.Object.retro_disable_thermal_visor = bpy.props.BoolProperty(name='Retro: Disable in Thermal Visor')\n" "bpy.types.Object.retro_disable_xray_visor = bpy.props.BoolProperty(name='Retro: Disable in X-Ray Visor')\n" "bpy.types.Object.retro_thermal_level = bpy.props.EnumProperty(items=[('COOL', 'Cool', 'Cool Temperature')," "('HOT', 'Hot', 'Hot Temperature')," "('WARM', 'Warm', 'Warm Temperature')]," "name='Retro: Thermal Visor Level')\n" "\n"; /* One shared material set for all meshes */ os << "# Materials\n" "materials = []\n" "\n"; MaterialSet matSet; atUint64 secStart = rs.position(); matSet.read(rs); matSet.readToBlender(os, pakRouter, entry, 0); rs.seek(secStart + head.secSizes[0], athena::Begin); std::vector vertAttribs; DNACMDL::GetVertexAttributes(matSet, vertAttribs); /* Read meshes */ atUint32 curSec = 1; for (atUint32 m=0 ; m, MaterialSet, RigPair, DNACMDL::SurfaceHeader_1> (os, rs, pakRouter, entry, dummy, true, true, vertAttribs, m, head.secCount, 0, &head.secSizes[curSec]); os.format("obj.retro_disable_enviro_visor = %s\n" "obj.retro_disable_thermal_visor = %s\n" "obj.retro_disable_xray_visor = %s\n" "obj.retro_thermal_level = '%s'\n", mHeader.visorFlags.disableEnviro() ? "True" : "False", mHeader.visorFlags.disableThermal() ? "True" : "False", mHeader.visorFlags.disableXray() ? "True" : "False", mHeader.visorFlags.thermalLevelStr()); } /* Skip AROT */ secStart = rs.position(); rs.seek(secStart + head.secSizes[curSec++], athena::Begin); /* Read SCLY layers */ secStart = rs.position(); SCLY scly; scly.read(rs); scly.exportToLayerDirectories(entry, pakRouter, force); rs.seek(secStart + head.secSizes[curSec++], athena::Begin); /* Read collision meshes */ DeafBabe collision; secStart = rs.position(); collision.read(rs); DeafBabe::BlenderInit(os); collision.sendToBlender(os); rs.seek(secStart + head.secSizes[curSec++], athena::Begin); /* Skip unknown section */ rs.seek(head.secSizes[curSec++], athena::Current); /* Read BABEDEAD Lights as Cycles emissives */ secStart = rs.position(); ReadBabeDeadToBlender_1_2(os, rs); rs.seek(secStart + head.secSizes[curSec++], athena::Begin); /* Dump VISI entities */ secStart = rs.position(); if (head.secSizes[curSec] && rs.readUint32Big() == 'VISI') { { rs.seek(secStart, athena::Begin); auto visiData = rs.readUBytes(head.secSizes[curSec]); athena::io::FileWriter visiOut(outPath.getWithExtension(_S(".visi"), true).getAbsolutePath()); visiOut.writeUBytes(visiData.get(), head.secSizes[curSec]); rs.seek(secStart + 4, athena::Begin); } athena::io::YAMLDocWriter visiWriter("VISI"); if (auto __vec = visiWriter.enterSubVector("entities")) { rs.seek(18, athena::Current); uint32_t entityCount = rs.readUint32Big(); rs.seek(8, athena::Current); for (int i=0 ; i& pakRouter, PAK::Entry& entry) { /* Do extract */ Header head; head.read(rs); rs.seekAlign32(); /* One shared material set for all meshes */ atUint64 secStart = rs.position(); MaterialSet matSet; matSet.read(rs); matSet.nameTextures(pakRouter, hecl::Format("MREA_%s", entry.id.toString().c_str()).c_str(), -1); rs.seek(secStart + head.secSizes[0], athena::Begin); /* Skip to SCLY */ atUint32 curSec = 1; secStart = rs.position(); while (curSec != head.sclySecIdx) secStart += head.secSizes[curSec++]; rs.seek(secStart, athena::Begin); SCLY scly; scly.read(rs); scly.nameIDs(pakRouter); /* Skip to PATH */ while (curSec != head.pathSecIdx) secStart += head.secSizes[curSec++]; rs.seek(secStart, athena::Begin); UniqueID32 pathID(rs); const nod::Node* node; PAK::Entry* pathEnt = (PAK::Entry*)pakRouter.lookupEntry(pathID, &node); pathEnt->name = entry.name + "_path"; } void MREA::MeshHeader::VisorFlags::setFromBlenderProps(const std::unordered_map& props) { auto search = props.find("retro_disable_enviro_visor"); if (search != props.cend() && !search->second.compare("True")) setDisableEnviro(true); search = props.find("retro_disable_thermal_visor"); if (search != props.cend() && !search->second.compare("True")) setDisableThermal(true); search = props.find("retro_disable_xray_visor"); if (search != props.cend() && !search->second.compare("True")) setDisableXray(true); search = props.find("retro_thermal_level"); if (search != props.cend()) { if (!search->second.compare("COOL")) setThermalLevel(ThermalLevel::Cool); else if (!search->second.compare("HOT")) setThermalLevel(ThermalLevel::Hot); else if (!search->second.compare("WARM")) setThermalLevel(ThermalLevel::Warm); } } bool MREA::Cook(const hecl::ProjectPath& outPath, const hecl::ProjectPath& inPath, const std::vector& meshes, const ColMesh& cMesh, const std::vector& lights) { return false; } bool MREA::PCCook(const hecl::ProjectPath& outPath, const hecl::ProjectPath& inPath, const std::vector& meshes, const ColMesh& cMesh, const std::vector& lights, hecl::BlenderToken& btok) { /* Discover area layers */ hecl::ProjectPath areaDirPath = inPath.getParentPath(); std::vector layerScriptPaths; { hecl::DirectoryEnumerator dEnum(inPath.getParentPath().getAbsolutePath(), hecl::DirectoryEnumerator::Mode::DirsSorted, false, false, true); for (const hecl::DirectoryEnumerator::Entry& ent : dEnum) { hecl::ProjectPath layerScriptPath(areaDirPath, ent.m_name + _S("/!objects.yaml")); if (layerScriptPath.isFile()) layerScriptPaths.push_back(std::move(layerScriptPath)); } } size_t secCount = 1 + meshes.size() * 5; /* (materials, 5 fixed model secs) */ /* tally up surfaces */ for (const DNACMDL::Mesh& mesh : meshes) secCount += mesh.surfaces.size(); /* Header */ Header head = {}; head.magic = 0xDEADBEEF; head.version = 0x1000F; head.localToWorldMtx[0].vec[0] = 1.f; head.localToWorldMtx[1].vec[1] = 1.f; head.localToWorldMtx[2].vec[2] = 1.f; head.meshCount = meshes.size(); head.geomSecIdx = 0; head.arotSecIdx = secCount++; head.sclySecIdx = secCount++; head.collisionSecIdx = secCount++; head.unkSecIdx = secCount++; head.lightSecIdx = secCount++; head.visiSecIdx = secCount++; head.pathSecIdx = secCount++; head.secCount = secCount; std::vector> secs; secs.reserve(secCount + 2); /* Header section */ { secs.emplace_back(head.binarySize(0), 0); athena::io::MemoryWriter w(secs.back().data(), secs.back().size()); head.write(w); int i = w.position(); int end = ROUND_UP_32(i); for (; i& sizesSec = secs.back(); /* Pre-emptively build full AABB and mesh AABBs in world coords */ zeus::CAABox fullAabb; std::vector meshAabbs; meshAabbs.reserve(meshes.size()); /* Models */ if (!DNACMDL::WriteHMDLMREASecs (secs, inPath, meshes, fullAabb, meshAabbs)) return false; /* AROT */ { AROTBuilder arotBuilder; arotBuilder.build(secs, fullAabb, meshAabbs, meshes); #if 0 hecl::BlenderConnection& conn = btok.getBlenderConnection(); if (!conn.createBlend(inPath.getWithExtension(_S(".octree.blend"), true), hecl::BlenderConnection::BlendType::Area)) return false; /* Open Py Stream and read sections */ hecl::BlenderConnection::PyOutStream os = conn.beginPythonOut(true); os.format("import bpy\n" "import bmesh\n" "from mathutils import Vector\n" "\n" "bpy.context.scene.name = '%s'\n", inPath.getLastComponentUTF8().data()); athena::io::MemoryReader reader(secs.back().data(), secs.back().size()); reader.readUint32Big(); reader.readUint32Big(); u32 numMeshBitmaps = reader.readUint32Big(); u32 meshBitCount = reader.readUint32Big(); u32 numNodes = reader.readUint32Big(); auto aabbMin = reader.readVec3fBig(); auto aabbMax = reader.readVec3fBig(); reader.seekAlign32(); reader.seek(ROUND_UP_32(meshBitCount) / 8 * numMeshBitmaps + numNodes * 4); zeus::CAABox arotAABB(aabbMin, aabbMax); OutputOctreeNode(os, reader, arotAABB); os.centerView(); os.close(); conn.saveBlend(); #endif } /* SCLY */ DNAMP1::SCLY sclyData = {}; { sclyData.fourCC = 'SCLY'; sclyData.version = 1; for (const hecl::ProjectPath& layer : layerScriptPaths) { athena::io::FileReader freader(layer.getAbsolutePath()); if (!freader.isOpen()) continue; if (!BigYAML::ValidateFromYAMLStream(freader)) continue; athena::io::YAMLDocReader reader; if (!reader.parse(&freader)) continue; sclyData.layers.emplace_back(); sclyData.layers.back().read(reader); sclyData.layerSizes.push_back(sclyData.layers.back().binarySize(0)); } sclyData.layerCount = sclyData.layers.size(); secs.emplace_back(sclyData.binarySize(0), 0); athena::io::MemoryWriter w(secs.back().data(), secs.back().size()); sclyData.write(w); } /* Collision */ { DeafBabe collision = {}; DeafBabeBuildFromBlender(collision, cMesh); #if 0 hecl::BlenderConnection& conn = btok.getBlenderConnection(); if (!conn.createBlend(inPath.getWithExtension(_S(".octree.blend"), true), hecl::BlenderConnection::BlendType::Area)) return false; /* Open Py Stream and read sections */ hecl::BlenderConnection::PyOutStream os = conn.beginPythonOut(true); os.format("import bpy\n" "import bmesh\n" "from mathutils import Vector\n" "\n" "bpy.context.scene.name = '%s'\n", inPath.getLastComponentUTF8().data()); athena::io::MemoryReader reader(collision.bspTree.get(), collision.bspSize); zeus::CAABox colAABB(collision.aabb[0], collision.aabb[1]); OutputOctreeNode(os, reader, collision.rootNodeType, colAABB); os.centerView(); os.close(); conn.saveBlend(); #endif secs.emplace_back(collision.binarySize(0), 0); athena::io::MemoryWriter w(secs.back().data(), secs.back().size()); collision.write(w); } /* Unk */ { secs.emplace_back(8, 0); athena::io::MemoryWriter w(secs.back().data(), secs.back().size()); w.writeUint32Big(1); } /* Lights */ std::vector lightsVisi[2]; { int actualCounts[2] = {}; for (const Light& l : lights) if (l.layer == 0 || l.layer == 1) ++actualCounts[l.layer]; lightsVisi[0].reserve(actualCounts[0]); lightsVisi[1].reserve(actualCounts[1]); secs.emplace_back(12 + 65 * (actualCounts[0] + actualCounts[1]), 0); athena::io::MemoryWriter w(secs.back().data(), secs.back().size()); w.writeUint32Big(0xBABEDEAD); for (int lay=0 ; lay<2 ; ++lay) { int lightCount = 0; for (const Light& l : lights) { if (l.layer == lay) ++lightCount; } w.writeUint32Big(lightCount); for (const Light& l : lights) { if (l.layer == lay) { BabeDeadLight light = {}; WriteBabeDeadLightFromBlender(light, l); light.write(w); lightsVisi[l.layer].push_back(light.position); } } } } /* VISI */ hecl::ProjectPath visiMetadataPath(areaDirPath, _S("!visi.yaml")); bool visiGood = false; if (visiMetadataPath.isFile()) { athena::io::FileReader visiReader(visiMetadataPath.getAbsolutePath()); athena::io::YAMLDocReader r; if (r.parse(&visiReader)) { size_t entityCount; std::vector> entities; if (auto __vec = r.enterSubVector("entities", entityCount)) { entities.reserve(entityCount); for (size_t i=0 ; i& obj : layer.objects) { if ((obj->id & 0xffff) == entityId) { zeus::CAABox entAABB = obj->getVISIAABB(btok); if (!entAABB.invalid()) entities.emplace_back(entityId, entAABB); } } } } } // Check if pre-generated visi exists, recycle if able hecl::ProjectPath preVisiPath = inPath.getWithExtension(_S(".visi"), true); if (preVisiPath.getPathType() == hecl::ProjectPath::Type::File) { athena::io::FileReader preVisiReader(preVisiPath.getAbsolutePath()); atUint64 preVisiLen = preVisiReader.length(); if (preVisiLen > 26) { auto preVisiData = preVisiReader.readUBytes(preVisiLen); athena::io::MemoryReader preVisiDataReader(preVisiData.get(), preVisiLen); atUint32 preVisiFourCC = preVisiDataReader.readUint32Big(); atUint32 preVisiVersion = preVisiDataReader.readUint32Big(); preVisiDataReader.readBool(); preVisiDataReader.readBool(); atUint32 preFeatureCount = preVisiDataReader.readUint32Big(); atUint32 preLightsCount = preVisiDataReader.readUint32Big(); atUint32 preLayer2LightCount = preVisiDataReader.readUint32Big(); atUint32 preEntityCount = preVisiDataReader.readUint32Big(); if (preVisiFourCC == 'VISI' && preVisiVersion == 2 && preFeatureCount == meshes.size() + entities.size() && preLightsCount == lightsVisi[0].size() + lightsVisi[1].size() && preLayer2LightCount == lightsVisi[1].size() && preEntityCount == entities.size()) { secs.emplace_back(preVisiLen, 0); memcpy(secs.back().data(), preVisiData.get(), preVisiLen); visiGood = true; } } } #if !WINDOWS_STORE if (!visiGood) { hecl::ProjectPath visiIntOut = outPath.getWithExtension(_S(".visiint")); athena::io::FileWriter w(visiIntOut.getAbsolutePath()); w.writeUint32Big(meshes.size()); for (const DNACMDL::Mesh& mesh : meshes) { w.writeUint32Big(uint32_t(mesh.topology)); w.writeUint32Big(mesh.pos.size()); for (const auto& v : mesh.pos) { atVec3f xfPos = hecl::BlenderConnection::DataStream::MtxVecMul4RM(mesh.sceneXf, v); w.writeVec3fBig(xfPos); } w.writeUint32Big(mesh.surfaces.size()); for (const DNACMDL::Mesh::Surface& surf : mesh.surfaces) { w.writeUint32Big(surf.verts.size()); for (const DNACMDL::Mesh::Surface::Vert& vert : surf.verts) w.writeUint32Big(vert.iPos); const DNACMDL::Mesh::Material& mat = mesh.materialSets[0][surf.materialIdx]; w.writeBool(mat.transparent); } } w.writeUint32Big(entities.size()); for (const auto& ent : entities) { w.writeUint32Big(ent.first); w.writeVec3fBig(ent.second.min); w.writeVec3fBig(ent.second.max); } w.writeUint32Big(lightsVisi[0].size() + lightsVisi[1].size()); w.writeUint32Big(lightsVisi[1].size()); for (const auto& light : lightsVisi[1]) w.writeVec3fBig(light); for (const auto& light : lightsVisi[0]) w.writeVec3fBig(light); w.close(); hecl::SystemString VisiGenPath = ExeDir + _S("/visigen"); #if _WIN32 VisiGenPath += _S(".exe"); #endif hecl::SystemChar thrIdx[16]; hecl::SNPrintf(thrIdx, 16, _S("%d"), hecl::ClientProcess::GetThreadWorkerIdx()); hecl::SystemChar parPid[32]; #if _WIN32 hecl::SNPrintf(parPid, 32, _S("%lluX"), reinterpret_cast(GetCurrentProcess())); #else hecl::SNPrintf(parPid, 32, _S("%lluX"), (unsigned long long)getpid()); #endif const hecl::SystemChar* args[] = {VisiGenPath.c_str(), visiIntOut.getAbsolutePath().data(), preVisiPath.getAbsolutePath().data(), thrIdx, parPid, nullptr}; if (0 == hecl::RunProcess(VisiGenPath.c_str(), args)) { athena::io::FileReader r(preVisiPath.getAbsolutePath()); size_t length = r.length(); secs.emplace_back(length, 0); r.readBytesToBuf(secs.back().data(), length); visiGood = true; } else { Log.report(logvisor::Fatal, _S("Unable to launch %s"), VisiGenPath.c_str()); } } #endif } } if (!visiGood) secs.emplace_back(4, 0); /* PATH */ { UniqueID32 pathId = inPath.ensureAuxInfo(_S("PATH")); secs.emplace_back(4, 0); athena::io::MemoryWriter w(secs.back().data(), secs.back().size()); pathId.write(w); } /* Assemble sizes and add padding */ { sizesSec.assign((((head.secCount) + 7) & ~7) * 4, 0); athena::io::MemoryWriter w(sizesSec.data(), sizesSec.size()); for (auto it = secs.begin() + 2 ; it != secs.end() ; ++it) { std::vector& sec = *it; int i = sec.size(); int end = ROUND_UP_32(i); sec.resize(end); w.writeUint32Big(end); } } /* Output all padded sections to file */ athena::io::FileWriter writer(outPath.getAbsolutePath()); for (const std::vector& sec : secs) writer.writeUBytes(sec.data(), sec.size()); return true; } bool MREA::CookPath(const hecl::ProjectPath& outPath, const hecl::ProjectPath& inPath) { PATH path = {}; path.version = 4; path.unkStructCount = 1; path.unkStructs.emplace_back(); PATH::UnknownStruct& s = path.unkStructs.back(); s.unk1 = 1; s.unk2[0] = atVec3f{FLT_MAX, FLT_MAX, FLT_MAX}; s.unk2[1] = atVec3f{-FLT_MAX, -FLT_MAX, -FLT_MAX}; s.unk2[2] = atVec3f{0.f, 0.f, 0.f}; for (int i=0 ; i<8 ; ++i) s.unk3[i] = ~0; s.unk4 = 0; s.unk5 = 0; athena::io::FileWriter w(outPath.getAbsolutePath()); path.write(w); int64_t rem = w.position() % 32; if (rem) for (int64_t i=0 ; i<32-rem ; ++i) w.writeUByte(0xff); return true; } } }