/* -*- c++ -*- (enables emacs c++ mode) */ /*=========================================================================== Copyright (C) 2009-2017 Yves Renard This file is a part of GetFEM++ GetFEM++ is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version along with the GCC Runtime Library Exception either version 3.1 or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License and GCC Runtime Library Exception for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. As a special exception, you may use this file as it is a part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU Lesser General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU Lesser General Public License. ===========================================================================*/ /**@file gmm_range_basis.h @author Yves Renard @date March 10, 2009. @brief Extract a basis of the range of a (large sparse) matrix from the columns of this matrix. */ #ifndef GMM_RANGE_BASIS_H #define GMM_RANGE_BASIS_H #include "gmm_dense_qr.h" #include "gmm_dense_lu.h" #include "gmm_kernel.h" #include "gmm_iter.h" #include #include namespace gmm { template void tridiag_qr_algorithm (std::vector::magnitude_type> diag, std::vector sdiag, const VECT &eigval_, const MAT1 &eigvect_, bool compvect, tol_type_for_qr tol = default_tol_for_qr) { VECT &eigval = const_cast(eigval_); MAT1 &eigvect = const_cast(eigvect_); typedef typename number_traits::magnitude_type R; if (compvect) gmm::copy(identity_matrix(), eigvect); size_type n = diag.size(), q = 0, p, ite = 0; if (n == 0) return; if (n == 1) { eigval[0] = gmm::real(diag[0]); return; } symmetric_qr_stop_criterion(diag, sdiag, p, q, tol); while (q < n) { sub_interval SUBI(p, n-p-q), SUBJ(0, mat_ncols(eigvect)), SUBK(p, n-p-q); if (!compvect) SUBK = sub_interval(0,0); symmetric_Wilkinson_qr_step(sub_vector(diag, SUBI), sub_vector(sdiag, SUBI), sub_matrix(eigvect, SUBJ, SUBK), compvect); symmetric_qr_stop_criterion(diag, sdiag, p, q, tol*R(3)); ++ite; GMM_ASSERT1(ite < n*100, "QR algorithm failed."); } gmm::copy(diag, eigval); } // Range basis with a restarted Lanczos method template void range_basis_eff_Lanczos(const Mat &BB, std::set &columns, double EPS=1E-12) { typedef std::set TAB; typedef typename linalg_traits::value_type T; typedef typename number_traits::magnitude_type R; size_type nc_r = columns.size(), k; col_matrix< rsvector > B(mat_nrows(BB), mat_ncols(BB)); k = 0; for (TAB::iterator it = columns.begin(); it!=columns.end(); ++it, ++k){ gmm::copy(scaled(mat_col(BB, *it), T(1)/vect_norm2(mat_col(BB, *it))), mat_col(B, *it)); } std::vector w(mat_nrows(B)); size_type restart = 120; std::vector sdiag(restart); std::vector eigval(restart), diag(restart); dense_matrix eigvect(restart, restart); R rho = R(-1), rho2; while (nc_r) { std::vector v(nc_r), v0(nc_r), wl(nc_r); dense_matrix lv(nc_r, restart); if (rho < R(0)) { // Estimate of the spectral radius of B^* B gmm::fill_random(v); for (size_type i = 0; i < 100; ++i) { gmm::scale(v, T(1)/vect_norm2(v)); gmm::copy(v, v0); k = 0; gmm::clear(w); for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it, ++k) add(scaled(mat_col(B, *it), v[k]), w); k = 0; for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it, ++k) v[k] = vect_hp(w, mat_col(B, *it)); rho = gmm::abs(vect_hp(v, v0) / vect_hp(v0, v0)); } rho *= R(2); } // Computing vectors of the null space of de B^* B with restarted Lanczos rho2 = 0; gmm::fill_random(v); size_type iter = 0; for(;;++iter) { R rho_old = rho2; R beta = R(0), alpha; gmm::scale(v, T(1)/vect_norm2(v)); size_type eff_restart = restart; if (sdiag.size() != restart) { sdiag.resize(restart); eigval.resize(restart); diag.resize(restart); gmm::resize(eigvect, restart, restart); gmm::resize(lv, nc_r, restart); } for (size_type i = 0; i < restart; ++i) { // Lanczos iterations gmm::copy(v, mat_col(lv, i)); gmm::clear(w); k = 0; for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it, ++k) add(scaled(mat_col(B, *it), v[k]), w); k = 0; for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it, ++k) wl[k] = v[k]*rho - vect_hp(w, mat_col(B, *it)) - beta*v0[k]; alpha = gmm::real(vect_hp(wl, v)); diag[i] = alpha; gmm::add(gmm::scaled(v, -alpha), wl); sdiag[i] = beta = vect_norm2(wl); gmm::copy(v, v0); if (beta < EPS) { eff_restart = i+1; break; } gmm::copy(gmm::scaled(wl, T(1) / beta), v); } if (eff_restart != restart) { sdiag.resize(eff_restart); eigval.resize(eff_restart); diag.resize(eff_restart); gmm::resize(eigvect, eff_restart, eff_restart); gmm::resize(lv, nc_r, eff_restart); } tridiag_qr_algorithm(diag, sdiag, eigval, eigvect, true); size_type num = size_type(-1); rho2 = R(0); for (size_type j = 0; j < eff_restart; ++j) { R nvp=gmm::abs(eigval[j]); if (nvp > rho2) { rho2=nvp; num=j; }} GMM_ASSERT1(num != size_type(-1), "Internal error"); gmm::mult(lv, mat_col(eigvect, num), v); if (gmm::abs(rho2-rho_old) < rho_old*R(EPS)) break; // if (gmm::abs(rho-rho2) < rho*R(gmm::sqrt(EPS))) break; if (gmm::abs(rho-rho2) < rho*R(EPS)*R(100)) break; } if (gmm::abs(rho-rho2) < rho*R(EPS*10.)) { size_type j_max = size_type(-1), j = 0; R val_max = R(0); for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it, ++j) if (gmm::abs(v[j]) > val_max) { val_max = gmm::abs(v[j]); j_max = *it; } columns.erase(j_max); nc_r = columns.size(); } else break; } } // Range basis with LU decomposition. Not stable from a numerical viewpoint. // Complex version not verified template void range_basis_eff_lu(const Mat &B, std::set &columns, std::vector &c_ortho, double EPS) { typedef std::set TAB; typedef typename linalg_traits::value_type T; typedef typename number_traits::magnitude_type R; size_type nc_r = 0, nc_o = 0, nc = mat_ncols(B), nr = mat_nrows(B), i, j; for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it) if (!(c_ortho[*it])) ++nc_r; else nc_o++; if (nc_r > 0) { gmm::row_matrix< gmm::rsvector > Hr(nc, nc_r), Ho(nc, nc_o); gmm::row_matrix< gmm::rsvector > BBr(nr, nc_r), BBo(nr, nc_o); i = j = 0; for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it) if (!(c_ortho[*it])) { Hr(*it, i) = T(1)/ vect_norminf(mat_col(B, *it)); ++i; } else { Ho(*it, j) = T(1)/ vect_norm2(mat_col(B, *it)); ++j; } gmm::mult(B, Hr, BBr); gmm::mult(B, Ho, BBo); gmm::dense_matrix M(nc_r, nc_r), BBB(nc_r, nc_o), MM(nc_r, nc_r); gmm::mult(gmm::conjugated(BBr), BBr, M); gmm::mult(gmm::conjugated(BBr), BBo, BBB); gmm::mult(BBB, gmm::conjugated(BBB), MM); gmm::add(gmm::scaled(MM, T(-1)), M); std::vector ipvt(nc_r); gmm::lu_factor(M, ipvt); R emax = R(0); for (i = 0; i < nc_r; ++i) emax = std::max(emax, gmm::abs(M(i,i))); i = 0; std::set c = columns; for (TAB::iterator it = c.begin(); it != c.end(); ++it) if (!(c_ortho[*it])) { if (gmm::abs(M(i,i)) <= R(EPS)*emax) columns.erase(*it); ++i; } } } // Range basis with Gram-Schmidt orthogonalization (sparse version) // The sparse version is better when the sparsity is high and less efficient // than the dense version for high degree elements (P3, P4 ...) // Complex version not verified template void range_basis_eff_Gram_Schmidt_sparse(const Mat &BB, std::set &columns, std::vector &c_ortho, double EPS) { typedef std::set TAB; typedef typename linalg_traits::value_type T; typedef typename number_traits::magnitude_type R; size_type nc = mat_ncols(BB), nr = mat_nrows(BB); std::set c = columns, rc = columns; gmm::col_matrix< rsvector > B(nr, nc); for (std::set::iterator it = columns.begin(); it != columns.end(); ++it) { gmm::copy(mat_col(BB, *it), mat_col(B, *it)); gmm::scale(mat_col(B, *it), T(1)/vect_norm2(mat_col(B, *it))); } for (std::set::iterator it = c.begin(); it != c.end(); ++it) if (c_ortho[*it]) { for (std::set::iterator it2 = rc.begin(); it2 != rc.end(); ++it2) if (!(c_ortho[*it2])) { T r = -vect_hp(mat_col(B, *it2), mat_col(B, *it)); if (r != T(0)) add(scaled(mat_col(B, *it), r), mat_col(B, *it2)); } rc.erase(*it); } while (rc.size()) { R nmax = R(0); size_type cmax = size_type(-1); for (std::set::iterator it=rc.begin(); it != rc.end();) { TAB::iterator itnext = it; ++itnext; R n = vect_norm2(mat_col(B, *it)); if (nmax < n) { nmax = n; cmax = *it; } if (n < R(EPS)) { columns.erase(*it); rc.erase(*it); } it = itnext; } if (nmax < R(EPS)) break; gmm::scale(mat_col(B, cmax), T(1)/vect_norm2(mat_col(B, cmax))); rc.erase(cmax); for (std::set::iterator it=rc.begin(); it!=rc.end(); ++it) { T r = -vect_hp(mat_col(B, *it), mat_col(B, cmax)); if (r != T(0)) add(scaled(mat_col(B, cmax), r), mat_col(B, *it)); } } for (std::set::iterator it=rc.begin(); it!=rc.end(); ++it) columns.erase(*it); } // Range basis with Gram-Schmidt orthogonalization (dense version) template void range_basis_eff_Gram_Schmidt_dense(const Mat &B, std::set &columns, std::vector &c_ortho, double EPS) { typedef std::set TAB; typedef typename linalg_traits::value_type T; typedef typename number_traits::magnitude_type R; size_type nc_r = columns.size(), nc = mat_ncols(B), nr = mat_nrows(B), i; std::set rc; row_matrix< gmm::rsvector > H(nc, nc_r), BB(nr, nc_r); std::vector v(nc_r); std::vector ind(nc_r); i = 0; for (TAB::iterator it = columns.begin(); it != columns.end(); ++it, ++i) H(*it, i) = T(1) / vect_norm2(mat_col(B, *it)); mult(B, H, BB); dense_matrix M(nc_r, nc_r); mult(gmm::conjugated(BB), BB, M); i = 0; for (TAB::iterator it = columns.begin(); it != columns.end(); ++it, ++i) if (c_ortho[*it]) { gmm::copy(mat_row(M, i), v); rank_one_update(M, scaled(v, T(-1)), v); M(i, i) = T(1); } else { rc.insert(i); ind[i] = *it; } while (rc.size() > 0) { // Next pivot R nmax = R(0); size_type imax = size_type(-1); for (TAB::iterator it = rc.begin(); it != rc.end();) { TAB::iterator itnext = it; ++itnext; R a = gmm::abs(M(*it, *it)); if (a > nmax) { nmax = a; imax = *it; } if (a < R(EPS)) { columns.erase(ind[*it]); rc.erase(*it); } it = itnext; } if (nmax < R(EPS)) break; // Normalization gmm::scale(mat_row(M, imax), T(1) / sqrt(nmax)); gmm::scale(mat_col(M, imax), T(1) / sqrt(nmax)); // orthogonalization copy(mat_row(M, imax), v); rank_one_update(M, scaled(v, T(-1)), v); M(imax, imax) = T(1); rc.erase(imax); } for (std::set::iterator it=rc.begin(); it!=rc.end(); ++it) columns.erase(ind[*it]); } template size_type nnz_eps(const L& l, double eps) { typename linalg_traits::const_iterator it = vect_const_begin(l), ite = vect_const_end(l); size_type res(0); for (; it != ite; ++it) if (gmm::abs(*it) >= eps) ++res; return res; } template bool reserve__rb(const L& l, std::vector &b, double eps) { typename linalg_traits::const_iterator it = vect_const_begin(l), ite = vect_const_end(l); bool ok = true; for (; it != ite; ++it) if (gmm::abs(*it) >= eps && b[it.index()]) ok = false; if (ok) { for (it = vect_const_begin(l); it != ite; ++it) if (gmm::abs(*it) >= eps) b[it.index()] = true; } return ok; } template void range_basis(const Mat &B, std::set &columns, double EPS, col_major, bool skip_init=false) { typedef typename linalg_traits::value_type T; typedef typename number_traits::magnitude_type R; size_type nc = mat_ncols(B), nr = mat_nrows(B); std::vector norms(nc); std::vector c_ortho(nc), booked(nr); std::vector< std::set > nnzs(mat_nrows(B)); if (!skip_init) { R norm_max = R(0); for (size_type i = 0; i < nc; ++i) { norms[i] = vect_norminf(mat_col(B, i)); norm_max = std::max(norm_max, norms[i]); } columns.clear(); for (size_type i = 0; i < nc; ++i) if (norms[i] > norm_max*R(EPS)) { columns.insert(i); nnzs[nnz_eps(mat_col(B, i), R(EPS) * norms[i])].insert(i); } for (size_type i = 1; i < nr; ++i) for (std::set::iterator it = nnzs[i].begin(); it != nnzs[i].end(); ++it) if (reserve__rb(mat_col(B, *it), booked, R(EPS) * norms[*it])) c_ortho[*it] = true; } size_type sizesm[7] = {125, 200, 350, 550, 800, 1100, 1500}, actsize; for (int k = 0; k < 7; ++k) { size_type nc_r = columns.size(); std::set c1, cres; actsize = sizesm[k]; for (std::set::iterator it = columns.begin(); it != columns.end(); ++it) { c1.insert(*it); if (c1.size() >= actsize) { range_basis_eff_Gram_Schmidt_dense(B, c1, c_ortho, EPS); for (std::set::iterator it2=c1.begin(); it2 != c1.end(); ++it2) cres.insert(*it2); c1.clear(); } } if (c1.size() > 1) range_basis_eff_Gram_Schmidt_dense(B, c1, c_ortho, EPS); for (std::set::iterator it = c1.begin(); it != c1.end(); ++it) cres.insert(*it); columns = cres; if (nc_r <= actsize) return; if (columns.size() == nc_r) break; if (sizesm[k] >= 350 && columns.size() > (nc_r*19)/20) break; } if (columns.size() > std::max(size_type(10), actsize)) range_basis_eff_Lanczos(B, columns, EPS); else range_basis_eff_Gram_Schmidt_dense(B, columns, c_ortho, EPS); } template void range_basis(const Mat &B, std::set &columns, double EPS, row_major) { typedef typename linalg_traits::value_type T; gmm::col_matrix< rsvector > BB(mat_nrows(B), mat_ncols(B)); GMM_WARNING3("A copy of a row matrix is done into a column matrix " "for range basis algorithm."); gmm::copy(B, BB); range_basis(BB, columns, EPS); } /** Range Basis : Extract a basis of the range of a (large sparse) matrix selecting some column vectors of this matrix. This is in particular useful to select an independent set of linear constraints. The algorithm is optimized for two cases : - when the (non trivial) kernel is small. An iterativ algorithm based on Lanczos method is applied - when the (non trivial) kernel is large and most of the dependencies can be detected locally. A block Gram-Schmidt is applied first then a restarted Lanczos method when the remaining kernel is greatly smaller. The restarted Lanczos method could be improved or replaced by a block Lanczos method, a block Wiedelann method (in order to be parallelized for instance) or simply could compute more than one vector of the null space at each iteration. The LU decomposition has been tested for local elimination but gives bad results : the algorithm is unstable and do not permit to give the right number of vector at the end of the process. Moreover, the number of final vectors depends greatly on the number of vectors in a block of the local analysis. */ template void range_basis(const Mat &B, std::set &columns, double EPS=1E-12) { range_basis(B, columns, EPS, typename principal_orientation_type ::sub_orientation>::potype()); } } #endif