#include "ANCS.hpp" namespace Retro { namespace DNAMP1 { void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::read(Athena::io::IStreamReader& reader) { parmType = reader.readUint32Big(); unk1 = reader.readUint32Big(); unk2 = reader.readFloatBig(); switch (DataType(parmType)) { case DataType::Int32: parmVals[0].int32 = reader.readInt32Big(); parmVals[1].int32 = reader.readInt32Big(); break; case DataType::UInt32: case DataType::Enum: parmVals[0].uint32 = reader.readUint32Big(); parmVals[1].uint32 = reader.readUint32Big(); break; case DataType::Float: parmVals[0].float32 = reader.readFloatBig(); parmVals[1].float32 = reader.readFloatBig(); break; case DataType::Bool: parmVals[0].bool1 = reader.readBool(); parmVals[1].bool1 = reader.readBool(); break; } } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::write(Athena::io::IStreamWriter& writer) const { writer.writeUint32Big(parmType); writer.writeUint32Big(unk1); writer.writeFloatBig(unk2); switch (DataType(parmType)) { case DataType::Int32: writer.writeInt32Big(parmVals[0].int32); writer.writeInt32Big(parmVals[1].int32); break; case DataType::UInt32: case DataType::Enum: writer.writeUint32Big(parmVals[0].uint32); writer.writeUint32Big(parmVals[0].uint32); break; case DataType::Float: writer.writeFloatBig(parmVals[0].float32); writer.writeFloatBig(parmVals[0].float32); break; case DataType::Bool: writer.writeBool(parmVals[0].bool1); writer.writeBool(parmVals[0].bool1); break; } } size_t ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::binarySize(size_t __isz) const { __isz += 12; switch (DataType(parmType)) { case DataType::Int32: case DataType::UInt32: case DataType::Enum: case DataType::Float: __isz += 8; break; case DataType::Bool: __isz += 2; break; } return __isz; } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::read(Athena::io::YAMLDocReader& reader) { parmType = reader.readUint32("parmType"); unk1 = reader.readUint32("unk1"); unk2 = reader.readFloat("unk2"); reader.enterSubVector("parmVals"); switch (DataType(parmType)) { case DataType::Int32: parmVals[0].int32 = reader.readInt32(nullptr); parmVals[1].int32 = reader.readInt32(nullptr); break; case DataType::UInt32: case DataType::Enum: parmVals[0].uint32 = reader.readUint32(nullptr); parmVals[1].uint32 = reader.readUint32(nullptr); break; case DataType::Float: parmVals[0].float32 = reader.readFloat(nullptr); parmVals[1].float32 = reader.readFloat(nullptr); break; case DataType::Bool: parmVals[0].bool1 = reader.readBool(nullptr); parmVals[1].bool1 = reader.readBool(nullptr); break; default: break; } reader.leaveSubVector(); } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::write(Athena::io::YAMLDocWriter& writer) const { writer.writeUint32("parmType", parmType); writer.writeUint32("unk1", unk1); writer.writeFloat("unk2", unk2); writer.enterSubVector("parmVals"); switch (DataType(parmType)) { case DataType::Int32: writer.writeInt32(nullptr, parmVals[0].int32); writer.writeInt32(nullptr, parmVals[1].int32); break; case DataType::UInt32: case DataType::Enum: writer.writeUint32(nullptr, parmVals[0].uint32); writer.writeUint32(nullptr, parmVals[0].uint32); break; case DataType::Float: writer.writeFloat(nullptr, parmVals[0].float32); writer.writeFloat(nullptr, parmVals[0].float32); break; case DataType::Bool: writer.writeBool(nullptr, parmVals[0].bool1); writer.writeBool(nullptr, parmVals[0].bool1); break; } writer.leaveSubVector(); } const char* ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::DNAType() { return "Retro::DNAMP1::ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo"; } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::read(Athena::io::IStreamReader& reader) { id = reader.readUint32Big(); atUint32 parmInfoCount = reader.readUint32Big(); atUint32 animInfoCount = reader.readUint32Big(); reader.enumerate(parmInfos, parmInfoCount); animInfos.clear(); animInfos.reserve(animInfoCount); reader.enumerate(animInfos, animInfoCount, [this, parmInfoCount](Athena::io::IStreamReader& reader, AnimInfo& ai) { ai.id = reader.readUint32Big(); ai.parmVals.reserve(parmInfoCount); for (const ParmInfo& pi : parmInfos) { switch (ParmInfo::DataType(pi.parmType)) { case ParmInfo::DataType::Int32: ai.parmVals.emplace_back(reader.readInt32Big()); break; case ParmInfo::DataType::UInt32: case ParmInfo::DataType::Enum: ai.parmVals.emplace_back(reader.readUint32Big()); break; case ParmInfo::DataType::Float: ai.parmVals.emplace_back(reader.readFloatBig()); break; case ParmInfo::DataType::Bool: ai.parmVals.emplace_back(reader.readBool()); break; default: break; } } }); } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::write(Athena::io::IStreamWriter& writer) const { writer.writeUint32Big(id); writer.writeUint32Big(parmInfos.size()); writer.writeUint32Big(animInfos.size()); for (const ParmInfo& pi : parmInfos) pi.write(writer); for (const AnimInfo& ai : animInfos) { writer.writeUint32Big(ai.id); auto it = ai.parmVals.begin(); for (const ParmInfo& pi : parmInfos) { ParmInfo::Parm pVal; if (it != ai.parmVals.end()) pVal = *it++; switch (ParmInfo::DataType(pi.parmType)) { case ParmInfo::DataType::Int32: writer.writeInt32Big(pVal.int32); break; case ParmInfo::DataType::UInt32: case ParmInfo::DataType::Enum: writer.writeUint32Big(pVal.uint32); break; case ParmInfo::DataType::Float: writer.writeFloatBig(pVal.float32); break; case ParmInfo::DataType::Bool: writer.writeBool(pVal.bool1); break; default: break; } } } } size_t ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::binarySize(size_t __isz) const { __isz += 12; __isz = __EnumerateSize(__isz, parmInfos); __isz += animInfos.size() * 4; for (const ParmInfo& pi : parmInfos) { switch (ParmInfo::DataType(pi.parmType)) { case ParmInfo::DataType::Int32: case ParmInfo::DataType::UInt32: case ParmInfo::DataType::Enum: case ParmInfo::DataType::Float: __isz += animInfos.size() * 4; break; case ParmInfo::DataType::Bool: __isz += animInfos.size(); break; default: break; } } return __isz; } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::read(Athena::io::YAMLDocReader& reader) { id = reader.readUint32("id"); atUint32 parmInfoCount = reader.readUint32("parmInfoCount"); atUint32 animInfoCount = reader.readUint32("animInfoCount"); reader.enumerate("parmInfos", parmInfos, parmInfoCount); reader.enumerate("animInfos", animInfos, animInfoCount, [this, parmInfoCount](Athena::io::YAMLDocReader& reader, AnimInfo& ai) { ai.id = reader.readUint32("id"); ai.parmVals.reserve(parmInfoCount); reader.enterSubVector("parmVals"); for (const ParmInfo& pi : parmInfos) { switch (ParmInfo::DataType(pi.parmType)) { case ParmInfo::DataType::Int32: ai.parmVals.emplace_back(reader.readInt32(nullptr)); break; case ParmInfo::DataType::UInt32: case ParmInfo::DataType::Enum: ai.parmVals.emplace_back(reader.readUint32(nullptr)); break; case ParmInfo::DataType::Float: ai.parmVals.emplace_back(reader.readFloat(nullptr)); break; case ParmInfo::DataType::Bool: ai.parmVals.emplace_back(reader.readBool(nullptr)); break; default: break; } } reader.leaveSubVector(); }); } void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::write(Athena::io::YAMLDocWriter& writer) const { writer.writeUint32("id", id); writer.writeUint32("parmInfoCount", parmInfos.size()); writer.writeUint32("animInfoCount", animInfos.size()); writer.enumerate("parmInfos", parmInfos); writer.enumerate("animInfos", animInfos, [this](Athena::io::YAMLDocWriter& writer, const AnimInfo& ai) { writer.writeUint32("id", ai.id); auto it = ai.parmVals.begin(); writer.enterSubVector("parms"); for (const ParmInfo& pi : parmInfos) { ParmInfo::Parm pVal; if (it != ai.parmVals.end()) pVal = *it++; switch (ParmInfo::DataType(pi.parmType)) { case ParmInfo::DataType::Int32: writer.writeInt32(nullptr, pVal.int32); break; case ParmInfo::DataType::UInt32: case ParmInfo::DataType::Enum: writer.writeUint32(nullptr, pVal.uint32); break; case ParmInfo::DataType::Float: writer.writeFloat(nullptr, pVal.float32); break; case ParmInfo::DataType::Bool: writer.writeBool(nullptr, pVal.bool1); break; default: break; } } writer.leaveSubVector(); }); } const char* ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::DNAType() { return "Retro::DNAMP1::ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState"; } void ANCS::CharacterSet::CharacterInfo::read(Athena::io::IStreamReader& reader) { idx = reader.readUint32Big(); atUint16 sectionCount = reader.readUint16Big(); name = reader.readString(); cmdl.read(reader); cskr.read(reader); cinf.read(reader); atUint32 animationCount = reader.readUint32Big(); reader.enumerate(animations, animationCount); pasDatabase.read(reader); atUint32 partCount = reader.readUint32Big(); reader.enumerate(partResData.part, partCount); atUint32 swhcCount = reader.readUint32Big(); reader.enumerate(partResData.swhc, swhcCount); atUint32 unkCount = reader.readUint32Big(); reader.enumerate(partResData.unk, unkCount); partResData.elsc.clear(); if (sectionCount > 5) { atUint32 elscCount = reader.readUint32Big(); reader.enumerate(partResData.elsc, elscCount); } unk1 = reader.readUint32Big(); animAABBs.clear(); if (sectionCount > 1) { atUint32 aabbCount = reader.readUint32Big(); reader.enumerate(animAABBs, aabbCount); } effects.clear(); if (sectionCount > 2) { atUint32 effectCount = reader.readUint32Big(); reader.enumerate(effects, effectCount); } if (sectionCount > 3) { cmdlOverlay.read(reader); cskrOverlay.read(reader); } animIdxs.clear(); if (sectionCount > 4) { atUint32 aidxCount = reader.readUint32Big(); reader.enumerateBig(animIdxs, aidxCount); } } void ANCS::CharacterSet::CharacterInfo::write(Athena::io::IStreamWriter& writer) const { writer.writeUint32Big(idx); atUint16 sectionCount; if (partResData.elsc.size()) sectionCount = 6; else if (animIdxs.size()) sectionCount = 5; else if (cmdlOverlay) sectionCount = 4; else if (effects.size()) sectionCount = 3; else if (animAABBs.size()) sectionCount = 2; else sectionCount = 1; writer.writeUint16Big(sectionCount); writer.writeString(name); cmdl.write(writer); cskr.write(writer); cinf.write(writer); writer.writeUint32Big(animations.size()); writer.enumerate(animations); pasDatabase.write(writer); writer.writeUint32Big(partResData.part.size()); writer.enumerate(partResData.part); writer.writeUint32Big(partResData.swhc.size()); writer.enumerate(partResData.swhc); writer.writeUint32Big(partResData.unk.size()); writer.enumerate(partResData.unk); if (sectionCount > 5) { writer.writeUint32Big(partResData.elsc.size()); writer.enumerate(partResData.elsc); } writer.writeUint32Big(unk1); if (sectionCount > 1) { writer.writeUint32Big(animAABBs.size()); writer.enumerate(animAABBs); } if (sectionCount > 2) { writer.writeUint32Big(effects.size()); writer.enumerate(effects); } if (sectionCount > 3) { cmdlOverlay.write(writer); cskrOverlay.write(writer); } if (sectionCount > 4) { writer.writeUint32Big(animIdxs.size()); for (atUint32 idx : animIdxs) writer.writeUint32Big(idx); } } size_t ANCS::CharacterSet::CharacterInfo::binarySize(size_t __isz) const { __isz += 6; atUint16 sectionCount; if (partResData.elsc.size()) sectionCount = 6; else if (animIdxs.size()) sectionCount = 5; else if (cmdlOverlay) sectionCount = 4; else if (effects.size()) sectionCount = 3; else if (animAABBs.size()) sectionCount = 2; else sectionCount = 1; __isz += name.size() + 1; __isz += 12; __isz += 4; __isz = __EnumerateSize(__isz, animations); __isz = pasDatabase.binarySize(__isz); __isz += 4; __isz = __EnumerateSize(__isz, partResData.part); __isz += 4; __isz = __EnumerateSize(__isz, partResData.swhc); __isz += 4; __isz = __EnumerateSize(__isz, partResData.unk); if (sectionCount > 5) { __isz += 4; __isz = __EnumerateSize(__isz, partResData.elsc); } __isz += 4; if (sectionCount > 1) { __isz += 4; __isz = __EnumerateSize(__isz, animAABBs); } if (sectionCount > 2) { __isz += 4; __isz = __EnumerateSize(__isz, effects); } if (sectionCount > 3) __isz += 8; if (sectionCount > 4) __isz += 4 + animIdxs.size() * 4; return __isz; } void ANCS::CharacterSet::CharacterInfo::read(Athena::io::YAMLDocReader& reader) { idx = reader.readUint32("idx"); atUint16 sectionCount = reader.readUint16("sectionCount"); name = reader.readString("name"); reader.enumerate("cmdl", cmdl); reader.enumerate("cskr", cskr); reader.enumerate("cinf", cinf); atUint32 animationCount = reader.readUint32("animationCount"); reader.enumerate("animations", animations, animationCount); reader.enumerate("pasDatabase", pasDatabase); atUint32 partCount = reader.readUint32("partCount"); reader.enumerate("part", partResData.part, partCount); atUint32 swhcCount = reader.readUint32("swhcCount"); reader.enumerate("swhc", partResData.swhc, swhcCount); atUint32 unkCount = reader.readUint32("unkCount"); reader.enumerate("unk", partResData.unk, unkCount); partResData.elsc.clear(); if (sectionCount > 5) { atUint32 elscCount = reader.readUint32("elscCount"); reader.enumerate("elsc", partResData.elsc, elscCount); } unk1 = reader.readUint32("unk1"); animAABBs.clear(); if (sectionCount > 1) { atUint32 aabbCount = reader.readUint32("animAABBCount"); reader.enumerate("part", animAABBs, aabbCount); } effects.clear(); if (sectionCount > 2) { atUint32 effectCount = reader.readUint32("effectCount"); reader.enumerate("effects", effects, effectCount); } if (sectionCount > 3) { reader.enumerate("cmdlOverride", cmdlOverlay); reader.enumerate("cskrOverride", cskrOverlay); } animIdxs.clear(); if (sectionCount > 4) { atUint32 animIdxCount = reader.readUint32("animIdxCount"); reader.enumerate("animIdxs", animIdxs, animIdxCount); } } void ANCS::CharacterSet::CharacterInfo::write(Athena::io::YAMLDocWriter& writer) const { writer.writeUint32("idx", idx); atUint16 sectionCount; if (partResData.elsc.size()) sectionCount = 6; else if (animIdxs.size()) sectionCount = 5; else if (cmdlOverlay) sectionCount = 4; else if (effects.size()) sectionCount = 3; else if (animAABBs.size()) sectionCount = 2; else sectionCount = 1; writer.writeUint16("sectionCount", sectionCount); writer.writeString("name", name); writer.enumerate("cmdl", cmdl); writer.enumerate("cskr", cskr); writer.enumerate("cinf", cinf); writer.writeUint32("animationCount", animations.size()); writer.enumerate("animations", animations); writer.enumerate("pasDatabase", pasDatabase); writer.writeUint32("partCount", partResData.part.size()); writer.enumerate("part", partResData.part); writer.writeUint32("swhcCount", partResData.swhc.size()); writer.enumerate("swhc", partResData.swhc); writer.writeUint32("unkCount", partResData.unk.size()); writer.enumerate("unk", partResData.unk); if (sectionCount > 5) { writer.writeUint32("elscCount", partResData.elsc.size()); writer.enumerate("elsc", partResData.elsc); } writer.writeUint32("unk1", unk1); if (sectionCount > 1) { writer.writeUint32("animAABBCount", animAABBs.size()); writer.enumerate("animAABBs", animAABBs); } if (sectionCount > 2) { writer.writeUint32("effectCount", effects.size()); writer.enumerate("effects", effects); } if (sectionCount > 3) { writer.enumerate("cmdlOverride", cmdlOverlay); writer.enumerate("cskrOverride", cskrOverlay); } if (sectionCount > 4) { writer.writeUint32("animIdxCount", animIdxs.size()); writer.enumerate("animIdxs", animIdxs); } } const char* ANCS::CharacterSet::CharacterInfo::DNAType() { return "Retro::DNAMP1::ANCS::CharacterSet::CharacterInfo"; } void ANCS::AnimationSet::MetaAnimFactory::read(Athena::io::IStreamReader& reader) { IMetaAnim::Type type(IMetaAnim::Type(reader.readUint32Big())); switch (type) { case IMetaAnim::Type::Primitive: m_anim.reset(new struct MetaAnimPrimitive); m_anim->read(reader); break; case IMetaAnim::Type::Blend: m_anim.reset(new struct MetaAnimBlend); m_anim->read(reader); break; case IMetaAnim::Type::PhaseBlend: m_anim.reset(new struct MetaAnimPhaseBlend); m_anim->read(reader); break; case IMetaAnim::Type::Random: m_anim.reset(new struct MetaAnimRandom); m_anim->read(reader); break; case IMetaAnim::Type::Sequence: m_anim.reset(new struct MetaAnimSequence); m_anim->read(reader); break; default: m_anim.reset(nullptr); break; } } void ANCS::AnimationSet::MetaAnimFactory::write(Athena::io::IStreamWriter& writer) const { if (!m_anim) return; writer.writeInt32Big(atUint32(m_anim->m_type)); m_anim->write(writer); } size_t ANCS::AnimationSet::MetaAnimFactory::binarySize(size_t __isz) const { if (!m_anim) return __isz; return m_anim->binarySize(__isz + 4); } void ANCS::AnimationSet::MetaAnimFactory::read(Athena::io::YAMLDocReader& reader) { std::string type = reader.readString("type"); std::transform(type.begin(), type.end(), type.begin(), tolower); if (!type.compare("primitive")) { m_anim.reset(new struct MetaAnimPrimitive); m_anim->read(reader); } else if (!type.compare("blend")) { m_anim.reset(new struct MetaAnimBlend); m_anim->read(reader); } else if (!type.compare("phaseblend")) { m_anim.reset(new struct MetaAnimPhaseBlend); m_anim->read(reader); } else if (!type.compare("random")) { m_anim.reset(new struct MetaAnimRandom); m_anim->read(reader); } else if (!type.compare("sequence")) { m_anim.reset(new struct MetaAnimSequence); m_anim->read(reader); } else { m_anim.reset(nullptr); } } void ANCS::AnimationSet::MetaAnimFactory::write(Athena::io::YAMLDocWriter& writer) const { if (!m_anim) return; writer.writeString("type", m_anim->m_typeStr); m_anim->write(writer); } const char* ANCS::AnimationSet::MetaAnimFactory::DNAType() { return "Retro::DNAMP1::ANCS::AnimationSet::MetaAnimFactory"; } void ANCS::AnimationSet::MetaTransFactory::read(Athena::io::IStreamReader& reader) { IMetaTrans::Type type(IMetaTrans::Type(reader.readUint32Big())); switch (type) { case IMetaTrans::Type::MetaAnim: m_trans.reset(new struct MetaTransMetaAnim); m_trans->read(reader); break; case IMetaTrans::Type::Trans: m_trans.reset(new struct MetaTransTrans); m_trans->read(reader); break; case IMetaTrans::Type::PhaseTrans: m_trans.reset(new struct MetaTransPhaseTrans); m_trans->read(reader); break; case IMetaTrans::Type::NoTrans: default: m_trans.reset(nullptr); break; } } void ANCS::AnimationSet::MetaTransFactory::write(Athena::io::IStreamWriter& writer) const { if (!m_trans) { writer.writeInt32Big(atUint32(IMetaTrans::Type::NoTrans)); return; } writer.writeInt32Big(atUint32(m_trans->m_type)); m_trans->write(writer); } size_t ANCS::AnimationSet::MetaTransFactory::binarySize(size_t __isz) const { if (!m_trans) return __isz + 4; return m_trans->binarySize(__isz + 4); } void ANCS::AnimationSet::MetaTransFactory::read(Athena::io::YAMLDocReader& reader) { std::string type = reader.readString("type"); std::transform(type.begin(), type.end(), type.begin(), tolower); if (!type.compare("metaanim")) { m_trans.reset(new struct MetaTransMetaAnim); m_trans->read(reader); } else if (!type.compare("trans")) { m_trans.reset(new struct MetaTransTrans); m_trans->read(reader); } else if (!type.compare("phasetrans")) { m_trans.reset(new struct MetaTransPhaseTrans); m_trans->read(reader); } else { m_trans.reset(nullptr); } } void ANCS::AnimationSet::MetaTransFactory::write(Athena::io::YAMLDocWriter& writer) const { if (!m_trans) { writer.writeString("type", "NoTrans"); return; } writer.writeString("type", m_trans->m_typeStr?m_trans->m_typeStr:"NoTrans"); m_trans->write(writer); } const char* ANCS::AnimationSet::MetaTransFactory::DNAType() { return "Retro::DNAMP1::ANCS::AnimationSet::MetaTransFactory"; } void ANCS::AnimationSet::read(Athena::io::IStreamReader& reader) { atUint16 sectionCount = reader.readUint16Big(); atUint32 animationCount = reader.readUint32Big(); reader.enumerate(animations, animationCount); atUint32 transitionCount = reader.readUint32Big(); reader.enumerate(transitions, transitionCount); defaultTransition.read(reader); additiveAnims.clear(); if (sectionCount > 1) { atUint32 additiveAnimCount = reader.readUint32Big(); reader.enumerate(additiveAnims, additiveAnimCount); floatA = reader.readFloatBig(); floatB = reader.readFloatBig(); } halfTransitions.clear(); if (sectionCount > 2) { atUint32 halfTransitionCount = reader.readUint32Big(); reader.enumerate(halfTransitions, halfTransitionCount); } animResources.clear(); if (sectionCount > 3) { atUint32 animResourcesCount = reader.readUint32Big(); reader.enumerate(animResources, animResourcesCount); } } void ANCS::AnimationSet::write(Athena::io::IStreamWriter& writer) const { atUint16 sectionCount; if (animResources.size()) sectionCount = 4; else if (halfTransitions.size()) sectionCount = 3; else if (additiveAnims.size()) sectionCount = 2; else sectionCount = 1; writer.writeUint16Big(sectionCount); writer.writeUint32Big(animations.size()); writer.enumerate(animations); writer.writeUint32Big(transitions.size()); writer.enumerate(transitions); defaultTransition.write(writer); if (sectionCount > 1) { writer.writeUint32Big(additiveAnims.size()); writer.enumerate(additiveAnims); writer.writeFloatBig(floatA); writer.writeFloatBig(floatB); } if (sectionCount > 2) { writer.writeUint32Big(halfTransitions.size()); writer.enumerate(halfTransitions); } if (sectionCount > 3) { writer.writeUint32Big(animResources.size()); writer.enumerate(animResources); } } size_t ANCS::AnimationSet::binarySize(size_t __isz) const { atUint16 sectionCount; if (animResources.size()) sectionCount = 4; else if (halfTransitions.size()) sectionCount = 3; else if (additiveAnims.size()) sectionCount = 2; else sectionCount = 1; __isz += 6; __isz = __EnumerateSize(__isz, animations); __isz += 4; __isz = __EnumerateSize(__isz, transitions); __isz = defaultTransition.binarySize(__isz); if (sectionCount > 1) { __isz += 4; __isz = __EnumerateSize(__isz, additiveAnims); __isz += 8; } if (sectionCount > 2) { __isz += 4; __isz = __EnumerateSize(__isz, halfTransitions); } if (sectionCount > 3) { __isz += 4; __isz = __EnumerateSize(__isz, animResources); } return __isz; } void ANCS::AnimationSet::read(Athena::io::YAMLDocReader& reader) { atUint16 sectionCount = reader.readUint16("sectionCount"); atUint32 animationCount = reader.readUint32("animationCount"); reader.enumerate("animations", animations, animationCount); atUint32 transitionCount = reader.readUint32("transitionCount"); reader.enumerate("transitions", transitions, transitionCount); reader.enumerate("defaultTransition", defaultTransition); additiveAnims.clear(); if (sectionCount > 1) { atUint32 additiveAnimCount = reader.readUint32("additiveAnimCount"); reader.enumerate("additiveAnims", additiveAnims, additiveAnimCount); floatA = reader.readFloat("floatA"); floatB = reader.readFloat("floatB"); } halfTransitions.clear(); if (sectionCount > 2) { atUint32 halfTransitionCount = reader.readUint32("halfTransitionCount"); reader.enumerate("halfTransitions", halfTransitions, halfTransitionCount); } animResources.clear(); if (sectionCount > 3) { atUint32 animResourcesCount = reader.readUint32("animResourcesCount"); reader.enumerate("animResources", animResources, animResourcesCount); } } void ANCS::AnimationSet::write(Athena::io::YAMLDocWriter& writer) const { atUint16 sectionCount; if (animResources.size()) sectionCount = 4; else if (halfTransitions.size()) sectionCount = 3; else if (additiveAnims.size()) sectionCount = 2; else sectionCount = 1; writer.writeUint16("sectionCount", sectionCount); writer.writeUint32("animationCount", animations.size()); writer.enumerate("animations", animations); writer.writeUint32("transitionCount", transitions.size()); writer.enumerate("transitions", transitions); writer.enumerate("defaultTransition", defaultTransition); if (sectionCount > 1) { writer.writeUint32("additiveAnimCount", additiveAnims.size()); writer.enumerate("additiveAnims", additiveAnims); writer.writeFloat("floatA", floatA); writer.writeFloat("floatB", floatB); } if (sectionCount > 2) { writer.writeUint32("halfTransitionCount", halfTransitions.size()); writer.enumerate("halfTransitions", halfTransitions); } if (sectionCount > 3) { writer.writeUint32("animResourcesCount", animResources.size()); writer.enumerate("animResources", animResources); } } const char* ANCS::AnimationSet::DNAType() { return "Retro::DNAMP1::ANCS::AnimationSet"; } } }