#include "AROTBuilder.hpp" #include "hecl/Blender/Connection.hpp" namespace DataSpec { logvisor::Module Log("AROTBuilder"); #define AROT_MAX_LEVEL 6 #define COLLISION_MIN_NODE_TRIANGLES 16 static zeus::CAABox SplitAABB(const zeus::CAABox& aabb, int i) { zeus::CAABox pos, neg; aabb.splitZ(neg, pos); if (i & 4) { zeus::CAABox(pos).splitY(neg, pos); if (i & 2) { zeus::CAABox(pos).splitX(neg, pos); if (i & 1) return pos; else return neg; } else { zeus::CAABox(neg).splitX(neg, pos); if (i & 1) return pos; else return neg; } } else { zeus::CAABox(neg).splitY(neg, pos); if (i & 2) { zeus::CAABox(pos).splitX(neg, pos); if (i & 1) return pos; else return neg; } else { zeus::CAABox(neg).splitX(neg, pos); if (i & 1) return pos; else return neg; } } } void AROTBuilder::Node::addChild(int level, int minChildren, const std::vector& triBoxes, const zeus::CAABox& curAABB, BspNodeType& typeOut) { /* Gather intersecting faces */ for (int i=0 ; i(); flags = 0; } } size_t AROTBuilder::BitmapPool::addIndices(const std::set& indices) { for (size_t i=0 ; i 65535) Log.report(logvisor::Fatal, "AROT bitmap exceeds 16-bit node addressing; area too complex"); uint32_t childCount = AROTChildCounts[compSubdivs]; nodeOff = curOff; nodeSz = childCount * 2 + 4; curOff += nodeSz; if (childNodes.size()) { for (int k=0 ; k < 1 + ((compSubdivs & 0x1) != 0) ; ++k) { for (int j=0 ; j < 1 + ((compSubdivs & 0x2) != 0) ; ++j) { for (int i=0 ; i < 1 + ((compSubdivs & 0x4) != 0) ; ++i) { int idx = k*4 + j*2 + i; childNodes[idx].nodeCount(sz, idxRefs, bmpPool, curOff); } } } idxRefs += childCount; } } void AROTBuilder::Node::writeIndirectionTable(athena::io::MemoryWriter& w) { w.writeUint32Big(nodeOff); if (childNodes.size()) { for (int k=0 ; k < 1 + ((compSubdivs & 0x1) != 0) ; ++k) { for (int j=0 ; j < 1 + ((compSubdivs & 0x2) != 0) ; ++j) { for (int i=0 ; i < 1 + ((compSubdivs & 0x4) != 0) ; ++i) { int idx = k*4 + j*2 + i; childNodes[idx].writeIndirectionTable(w); } } } } } void AROTBuilder::Node::writeNodes(athena::io::MemoryWriter& w, int nodeIdx) { w.writeUint16Big(poolIdx); w.writeUint16Big(compSubdivs); if (childNodes.size()) { int curIdx = nodeIdx + 1; if (curIdx > 65535) Log.report(logvisor::Fatal, "AROT node exceeds 16-bit node addressing; area too complex"); int childIndices[8]; for (int k=0 ; k < 1 + ((compSubdivs & 0x1) != 0) ; ++k) { for (int j=0 ; j < 1 + ((compSubdivs & 0x2) != 0) ; ++j) { for (int i=0 ; i < 1 + ((compSubdivs & 0x4) != 0) ; ++i) { int idx = k*4 + j*2 + i; w.writeUint16Big(curIdx); childIndices[idx] = curIdx; childNodes[idx].advanceIndex(curIdx); } } } for (int k=0 ; k < 1 + ((compSubdivs & 0x1) != 0) ; ++k) { for (int j=0 ; j < 1 + ((compSubdivs & 0x2) != 0) ; ++j) { for (int i=0 ; i < 1 + ((compSubdivs & 0x4) != 0) ; ++i) { int idx = k*4 + j*2 + i; childNodes[idx].writeNodes(w, childIndices[idx]); } } } } } void AROTBuilder::Node::advanceIndex(int& nodeIdx) { ++nodeIdx; if (childNodes.size()) { for (int k=0 ; k < 1 + ((compSubdivs & 0x1) != 0) ; ++k) { for (int j=0 ; j < 1 + ((compSubdivs & 0x2) != 0) ; ++j) { for (int i=0 ; i < 1 + ((compSubdivs & 0x4) != 0) ; ++i) { int idx = k*4 + j*2 + i; childNodes[idx].advanceIndex(nodeIdx); } } } } } void AROTBuilder::Node::colSize(size_t& totalSz) { if (childIndices.size()) { nodeOff = totalSz; if (childNodes.empty()) { totalSz += 26 + childIndices.size() * 2; } else { totalSz += 36; for (int i=0 ; i<8 ; ++i) childNodes[i].colSize(totalSz); } } } void AROTBuilder::Node::writeColNodes(uint8_t*& ptr, const zeus::CAABox& curAABB) { if (childIndices.size()) { if (childNodes.empty()) { float* aabbOut = reinterpret_cast(ptr); aabbOut[0] = hecl::SBig(curAABB.min[0]); aabbOut[1] = hecl::SBig(curAABB.min[1]); aabbOut[2] = hecl::SBig(curAABB.min[2]); aabbOut[3] = hecl::SBig(curAABB.max[0]); aabbOut[4] = hecl::SBig(curAABB.max[1]); aabbOut[5] = hecl::SBig(curAABB.max[2]); athena::io::MemoryWriter w(ptr + 24, INT32_MAX); w.writeUint16Big(childIndices.size()); for (int idx : childIndices) w.writeUint16Big(idx); ptr += 26 + childIndices.size() * 2; } else { uint16_t* pflags = reinterpret_cast(ptr); uint32_t* offsets = reinterpret_cast(ptr + 4); memset(pflags, 0, sizeof(uint32_t) * 9); for (int i=0 ; i<8 ; ++i) { const Node& chNode = childNodes[i]; BspNodeType type = BspNodeType((flags >> (i * 2)) & 0x3); if (type != BspNodeType::Invalid) offsets[i] = hecl::SBig(uint32_t(chNode.nodeOff - nodeOff - 36)); } *pflags = hecl::SBig(flags); ptr += 36; for (int i=0 ; i<8 ; ++i) childNodes[i].writeColNodes(ptr, SplitAABB(curAABB, i)); } } } void AROTBuilder::build(std::vector>& secs, const zeus::CAABox& fullAabb, const std::vector& meshAabbs, const std::vector& meshes) { /* Recursively split */ BspNodeType rootType; rootNode.addChild(0, 1, meshAabbs, fullAabb, rootType); /* Calculate indexing metrics */ size_t totalNodeCount = 0; size_t idxRefCount = 0; size_t curOff = 0; rootNode.nodeCount(totalNodeCount, idxRefCount, bmpPool, curOff); size_t bmpWordCount = ROUND_UP_32(meshes.size()) / 32; size_t arotSz = 64 + bmpWordCount * bmpPool.m_pool.size() * 4 + totalNodeCount * 8 + idxRefCount * 2; /* Write header */ secs.emplace_back(arotSz, 0); athena::io::MemoryWriter w(secs.back().data(), secs.back().size()); w.writeUint32Big('AROT'); w.writeUint32Big(1); w.writeUint32Big(bmpPool.m_pool.size()); w.writeUint32Big(meshes.size()); w.writeUint32Big(totalNodeCount); w.writeVec3fBig(fullAabb.min); w.writeVec3fBig(fullAabb.max); w.seekAlign32(); /* Write bitmap */ std::vector bmpWords; bmpWords.reserve(bmpWordCount); for (const std::set& bmp : bmpPool.m_pool) { bmpWords.clear(); bmpWords.resize(bmpWordCount); auto bmpIt = bmp.cbegin(); if (bmpIt != bmp.cend()) { int curIdx = 0; for (int w=0 ; w, uint32_t> AROTBuilder::buildCol(const ColMesh& mesh, BspNodeType& rootOut) { /* Accumulate total AABB */ zeus::CAABox fullAABB; for (const auto& vert : mesh.verts) fullAABB.accumulateBounds(zeus::CVector3f(vert)); /* Predetermine triangle AABBs */ std::vector triBoxes; triBoxes.reserve(mesh.trianges.size()); for (const ColMesh::Triangle& tri : mesh.trianges) { triBoxes.emplace_back(); zeus::CAABox& aabb = triBoxes.back(); for (int e=0 ; e<3 ; ++e) { const ColMesh::Edge& edge = mesh.edges[tri.edges[e]]; for (int v=0 ; v<2 ; ++v) { const auto& vert = mesh.verts[edge.verts[v]]; aabb.accumulateBounds(zeus::CVector3f(vert)); } } } /* Recursively split */ rootNode.addChild(0, COLLISION_MIN_NODE_TRIANGLES, triBoxes, fullAABB, rootOut); /* Calculate offsets and write out */ size_t totalSize = 0; rootNode.colSize(totalSize); std::unique_ptr ret(new uint8_t[totalSize]); uint8_t* ptr = ret.get(); rootNode.writeColNodes(ptr, fullAABB); return {std::move(ret), totalSize}; } }