#pragma once #include #include "logvisor/logvisor.hpp" #include "athena/DNAYaml.hpp" #include "hecl/Database.hpp" #include "../SpecBase.hpp" #include "boo/ThreadLocalPtr.hpp" #include "zeus/CColor.hpp" namespace DataSpec { struct SpecBase; extern logvisor::Module LogDNACommon; extern ThreadLocalPtr g_curSpec; extern ThreadLocalPtr g_PakRouter; extern ThreadLocalPtr g_ThreadBlenderToken; /* This comes up a great deal */ typedef athena::io::DNA BigDNA; typedef athena::io::DNAV BigDNAV; typedef athena::io::DNAVYaml BigDNAVYaml; /** FourCC with DNA read/write */ class DNAFourCC final : public BigDNA, public hecl::FourCC { public: DNAFourCC() : hecl::FourCC() {} DNAFourCC(const hecl::FourCC& other) : hecl::FourCC() {num = other.toUint32();} DNAFourCC(const char* name) : hecl::FourCC(name) {} DNAFourCC(uint32_t n) : hecl::FourCC(n) {} AT_DECL_EXPLICIT_DNA_YAML }; template <> inline void DNAFourCC::Enumerate(typename Read::StreamT& r) { r.readUBytesToBuf(fcc, 4); } template <> inline void DNAFourCC::Enumerate(typename Write::StreamT& w) { w.writeUBytes((atUint8*)fcc, 4); } template <> inline void DNAFourCC::Enumerate(typename ReadYaml::StreamT& r) { std::string rs = r.readString(nullptr); strncpy(fcc, rs.c_str(), 4); } template <> inline void DNAFourCC::Enumerate(typename WriteYaml::StreamT& w) { w.writeString(nullptr, std::string(fcc, 4)); } template <> inline void DNAFourCC::Enumerate(typename BinarySize::StreamT& s) { s += 4; } class DNAColor final : public BigDNA, public zeus::CColor { public: DNAColor() = default; DNAColor(const zeus::CColor& color) : zeus::CColor(color) {} AT_DECL_EXPLICIT_DNA_YAML }; template <> inline void DNAColor::Enumerate(typename Read::StreamT& _r) { zeus::CColor::readRGBABig(_r); } template <> inline void DNAColor::Enumerate(typename Write::StreamT& _w) { zeus::CColor::writeRGBABig(_w); } template <> inline void DNAColor::Enumerate(typename ReadYaml::StreamT& _r) { size_t count; if (auto v = _r.enterSubVector(nullptr, count)) { r = (count >= 1) ? _r.readFloat(nullptr) : 0.f; g = (count >= 2) ? _r.readFloat(nullptr) : 0.f; b = (count >= 3) ? _r.readFloat(nullptr) : 0.f; a = (count >= 4) ? _r.readFloat(nullptr) : 0.f; } } template <> inline void DNAColor::Enumerate(typename WriteYaml::StreamT& _w) { if (auto v = _w.enterSubVector(nullptr)) { _w.writeFloat(nullptr, r); _w.writeFloat(nullptr, g); _w.writeFloat(nullptr, b); _w.writeFloat(nullptr, a); } } template <> inline void DNAColor::Enumerate(typename BinarySize::StreamT& _s) { _s += 16; } using FourCC = hecl::FourCC; class UniqueID32; class UniqueID64; class UniqueID128; /** Common virtual interface for runtime ambiguity resolution */ class PAKRouterBase { protected: const SpecBase& m_dataSpec; public: PAKRouterBase(const SpecBase& dataSpec) : m_dataSpec(dataSpec) {} hecl::Database::Project& getProject() const {return m_dataSpec.getProject();} virtual hecl::ProjectPath getWorking(const UniqueID32&, bool silenceWarnings=false) const { LogDNACommon.report(logvisor::Fatal, "PAKRouter IDType mismatch; expected UniqueID32 specialization"); return hecl::ProjectPath(); } virtual hecl::ProjectPath getWorking(const UniqueID64&, bool silenceWarnings=false) const { LogDNACommon.report(logvisor::Fatal, "PAKRouter IDType mismatch; expected UniqueID64 specialization"); return hecl::ProjectPath(); } virtual hecl::ProjectPath getWorking(const UniqueID128&, bool silenceWarnings=false) const { LogDNACommon.report(logvisor::Fatal, "PAKRouter IDType mismatch; expected UniqueID128 specialization"); return hecl::ProjectPath(); } }; /** Globally-accessed manager allowing UniqueID* classes to directly * lookup destination paths of resources */ class UniqueIDBridge { friend class UniqueID32; friend class UniqueID64; static ThreadLocalPtr s_Project; static ThreadLocalPtr> s_restorer32; static ThreadLocalPtr> s_restorer64; static ThreadLocalPtr> s_restorer128; public: template static hecl::ProjectPath TranslatePakIdToPath(const IDType& id, bool silenceWarnings=false); template static hecl::ProjectPath MakePathFromString(std::string_view str); template static void TransformOldHashToNewHash(IDType& id); static void SetThreadProject(hecl::Database::Project& project); template static IDRestorer* GetIDRestorer(); template static void SetIDRestorer(IDRestorer* restorer); }; template <> inline IDRestorer* UniqueIDBridge::GetIDRestorer() { return s_restorer32.get(); } template <> inline void UniqueIDBridge::SetIDRestorer(IDRestorer* restorer) { s_restorer32.reset(restorer); } template <> inline IDRestorer* UniqueIDBridge::GetIDRestorer() { return s_restorer64.get(); } template <> inline void UniqueIDBridge::SetIDRestorer(IDRestorer* restorer) { s_restorer64.reset(restorer); } template <> inline IDRestorer* UniqueIDBridge::GetIDRestorer() { return s_restorer128.get(); } template <> inline void UniqueIDBridge::SetIDRestorer(IDRestorer* restorer) { s_restorer128.reset(restorer); } /** PAK 32-bit Unique ID */ class UniqueID32 : public BigDNA { protected: uint32_t m_id = 0xffffffff; public: using value_type = uint32_t; static UniqueID32 kInvalidId; AT_DECL_EXPLICIT_DNA_YAML operator bool() const {return m_id != 0xffffffff && m_id != 0;} void assign(uint32_t id, bool noOriginal = false); UniqueID32& operator=(const hecl::ProjectPath& path) {assign(path.hash().val32()); return *this;} bool operator!=(const UniqueID32& other) const {return m_id != other.m_id;} bool operator==(const UniqueID32& other) const {return m_id == other.m_id;} bool operator<(const UniqueID32& other) const {return m_id < other.m_id;} uint32_t toUint32() const {return m_id;} uint64_t toUint64() const {return m_id;} std::string toString() const; void clear() {m_id = 0xffffffff;} UniqueID32() = default; UniqueID32(uint32_t idin, bool noOriginal = false) {assign(idin, noOriginal);} UniqueID32(athena::io::IStreamReader& reader) {read(reader);} UniqueID32(const hecl::ProjectPath& path) {*this = path;} UniqueID32(const char* hexStr) { char copy[9]; strncpy(copy, hexStr, 8); copy[8] = '\0'; assign(strtoul(copy, nullptr, 16)); } UniqueID32(const wchar_t* hexStr) { wchar_t copy[9]; wcsncpy(copy, hexStr, 8); copy[8] = L'\0'; assign(wcstoul(copy, nullptr, 16)); } static constexpr size_t BinarySize() {return 4;} }; /** PAK 32-bit Unique ID - writes zero when invalid */ class UniqueID32Zero : public UniqueID32 { public: AT_DECL_DNA_YAML Delete __d2; using UniqueID32::UniqueID32; }; class AuxiliaryID32 : public UniqueID32 { const hecl::SystemChar* m_auxStr; const hecl::SystemChar* m_addExtension; UniqueID32 m_baseId; public: AT_DECL_DNA Delete __d2; AuxiliaryID32(const hecl::SystemChar* auxStr, const hecl::SystemChar* addExtension=nullptr) : m_auxStr(auxStr), m_addExtension(addExtension) {} AuxiliaryID32& operator=(const hecl::ProjectPath& path); AuxiliaryID32& operator=(const UniqueID32& id); const UniqueID32& getBaseId() const {return m_baseId;} }; /** PAK 64-bit Unique ID */ class UniqueID64 : public BigDNA { uint64_t m_id = 0xffffffffffffffff; public: using value_type = uint64_t; AT_DECL_EXPLICIT_DNA_YAML operator bool() const {return m_id != 0xffffffffffffffff && m_id != 0;} void assign(uint64_t id, bool noOriginal = false); UniqueID64& operator=(const hecl::ProjectPath& path) {assign(path.hash().val64()); return *this;} bool operator!=(const UniqueID64& other) const {return m_id != other.m_id;} bool operator==(const UniqueID64& other) const {return m_id == other.m_id;} bool operator<(const UniqueID64& other) const {return m_id < other.m_id;} uint64_t toUint64() const {return m_id;} std::string toString() const; void clear() {m_id = 0xffffffffffffffff;} UniqueID64() = default; UniqueID64(uint64_t idin, bool noOriginal = false) {assign(idin, noOriginal);} UniqueID64(athena::io::IStreamReader& reader) {read(reader);} UniqueID64(const hecl::ProjectPath& path) {*this = path;} UniqueID64(const char* hexStr) { char copy[17]; strncpy(copy, hexStr, 16); copy[16] = '\0'; #if _WIN32 assign(_strtoui64(copy, nullptr, 16)); #else assign(strtouq(copy, nullptr, 16)); #endif } UniqueID64(const wchar_t* hexStr) { wchar_t copy[17]; wcsncpy(copy, hexStr, 16); copy[16] = L'\0'; #if _WIN32 assign(_wcstoui64(copy, nullptr, 16)); #else assign(wcstoull(copy, nullptr, 16)); #endif } static constexpr size_t BinarySize() {return 8;} }; /** PAK 128-bit Unique ID */ class UniqueID128 : public BigDNA { public: union Value { uint64_t id[2]; #if __SSE__ __m128i id128; #endif }; private: Value m_id; public: using value_type = uint64_t; AT_DECL_EXPLICIT_DNA_YAML UniqueID128() {m_id.id[0]=0xffffffffffffffff; m_id.id[1]=0xffffffffffffffff;} UniqueID128(uint64_t idin, bool noOriginal = false) { m_id.id[0] = idin; m_id.id[1] = 0; } operator bool() const {return m_id.id[0] != 0xffffffffffffffff && m_id.id[0] != 0 && m_id.id[1] != 0xffffffffffffffff && m_id.id[1] != 0;} UniqueID128& operator=(const hecl::ProjectPath& path) { m_id.id[0] = path.hash().val64(); m_id.id[1] = 0; return *this; } UniqueID128(const hecl::ProjectPath& path) {*this = path;} bool operator!=(const UniqueID128& other) const { #if __SSE__ __m128i vcmp = _mm_cmpeq_epi32(m_id.id128, other.m_id.id128); int vmask = _mm_movemask_epi8(vcmp); return vmask != 0xffff; #else return (m_id.id[0] != other.m_id.id[0]) || (m_id.id[1] != other.m_id.id[1]); #endif } bool operator==(const UniqueID128& other) const { #if __SSE__ __m128i vcmp = _mm_cmpeq_epi32(m_id.id128, other.m_id.id128); int vmask = _mm_movemask_epi8(vcmp); return vmask == 0xffff; #else return (m_id.id[0] == other.m_id.id[0]) && (m_id.id[1] == other.m_id.id[1]); #endif } void clear() {m_id.id[0] = 0xffffffffffffffff; m_id.id[1] = 0xffffffffffffffff;} uint64_t toUint64() const {return m_id.id[0];} uint64_t toHighUint64() const {return m_id.id[0];} uint64_t toLowUint64() const {return m_id.id[1];} std::string toString() const; static constexpr size_t BinarySize() {return 16;} }; /** Casts ID type to its null-zero equivalent */ template using CastIDToZero = typename std::conditional_t, UniqueID32Zero, T>; /** Word Bitmap reader/writer */ class WordBitmap { std::vector m_words; size_t m_bitCount = 0; public: void read(athena::io::IStreamReader& reader, size_t bitCount); void write(athena::io::IStreamWriter& writer) const; void reserve(size_t bitCount) { m_words.reserve((bitCount + 31) / 32); } void binarySize(size_t& __isz) const; size_t getBitCount() const {return m_bitCount;} bool getBit(size_t idx) const { size_t wordIdx = idx / 32; if (wordIdx >= m_words.size()) return false; size_t wordCur = idx % 32; return (m_words[wordIdx] >> wordCur) & 0x1; } void setBit(size_t idx) { size_t wordIdx = idx / 32; while (wordIdx >= m_words.size()) m_words.push_back(0); size_t wordCur = idx % 32; m_words[wordIdx] |= (1 << wordCur); m_bitCount = std::max(m_bitCount, idx + 1); } void unsetBit(size_t idx) { size_t wordIdx = idx / 32; while (wordIdx >= m_words.size()) m_words.push_back(0); size_t wordCur = idx % 32; m_words[wordIdx] &= ~(1 << wordCur); m_bitCount = std::max(m_bitCount, idx + 1); } void clear() { m_words.clear(); m_bitCount = 0; } class Iterator { friend class WordBitmap; const WordBitmap& m_bmp; size_t m_idx = 0; Iterator(const WordBitmap& bmp, size_t idx) : m_bmp(bmp), m_idx(idx) {} public: using iterator_category = std::forward_iterator_tag; using value_type = bool; using difference_type = std::ptrdiff_t; using pointer = bool*; using reference = bool&; Iterator& operator++() {++m_idx; return *this;} bool operator*() {return m_bmp.getBit(m_idx);} bool operator!=(const Iterator& other) const {return m_idx != other.m_idx;} }; Iterator begin() const {return Iterator(*this, 0);} Iterator end() const {return Iterator(*this, m_bitCount);} }; /** Resource cooker function */ typedef std::function ResCooker; /** Mappings of resources involved in extracting characters */ template struct CharacterAssociations { using RigPair = std::pair; /* CMDL -> (CSKR, CINF) */ std::unordered_map m_cmdlRigs; /* (CSKR, CINF) -> ANCS */ std::unordered_map> m_cskrCinfToCharacter; /* ANCS -> (CINF, CMDL) */ std::unordered_multimap> m_characterToAttachmentRigs; using MultimapIteratorPair = std::pair< typename std::unordered_multimap>::const_iterator, typename std::unordered_multimap>::const_iterator>; void addAttachmentRig(IDType character, IDType cinf, IDType cmdl, const char* name) { auto range = m_characterToAttachmentRigs.equal_range(character); for (auto it = range.first; it != range.second; ++it) if (it->second.second == name) return; m_characterToAttachmentRigs.insert( std::make_pair(character, std::make_pair(std::make_pair(cinf, cmdl), name))); } }; } /* Hash template-specializations for UniqueID types */ namespace std { template<> struct hash { size_t operator()(const DataSpec::DNAFourCC& fcc) const {return fcc.toUint32();} }; template<> struct hash { size_t operator()(const DataSpec::UniqueID32& id) const {return id.toUint32();} }; template<> struct hash { size_t operator()(const DataSpec::UniqueID64& id) const {return id.toUint64();} }; template<> struct hash { size_t operator()(const DataSpec::UniqueID128& id) const {return id.toHighUint64() ^ id.toLowUint64();} }; }