/* -*- c++ -*- (enables emacs c++ mode) */ /*=========================================================================== Copyright (C) 2004-2017 Yves Renard This file is a part of GetFEM++ GetFEM++ is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version along with the GCC Runtime Library Exception either version 3.1 or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License and GCC Runtime Library Exception for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. As a special exception, you may use this file as it is a part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU Lesser General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU Lesser General Public License. ===========================================================================*/ /** @file gmm_domain_decomp.h @author Yves Renard @date May 21, 2004. @brief Domain decomposition. */ #ifndef GMM_DOMAIN_DECOMP_H__ #define GMM_DOMAIN_DECOMP_H__ #include "gmm_kernel.h" #include namespace gmm { /** This function separates into small boxes of size msize with a ratio * of overlap (in [0,1[) a set of points. The result is given into a * vector of sparse matrices vB. */ template void rudimentary_regular_decomposition(std::vector pts, double msize, double overlap, std::vector &vB) { typedef typename linalg_traits::value_type value_type; typedef abstract_null_type void_type; typedef std::map map_type; size_type nbpts = pts.size(); if (!nbpts || pts[0].size() == 0) { vB.resize(0); return; } int dim = int(pts[0].size()); // computation of the global box and the number of sub-domains Point pmin = pts[0], pmax = pts[0]; for (size_type i = 1; i < nbpts; ++i) for (int k = 0; k < dim; ++k) { pmin[k] = std::min(pmin[k], pts[i][k]); pmax[k] = std::max(pmax[k], pts[i][k]); } std::vector nbsub(dim), mult(dim); std::vector pts1(dim), pts2(dim); size_type nbtotsub = 1; for (int k = 0; k < dim; ++k) { nbsub[k] = size_type((pmax[k] - pmin[k]) / msize)+1; mult[k] = nbtotsub; nbtotsub *= nbsub[k]; } std::vector subs(nbtotsub); // points ventilation std::vector ns(dim), na(dim), nu(dim); for (size_type i = 0; i < nbpts; ++i) { for (int k = 0; k < dim; ++k) { double a = (pts[i][k] - pmin[k]) / msize; ns[k] = size_type(a) - 1; na[k] = 0; pts1[k] = int(a + overlap); pts2[k] = int(ceil(a-1.0-overlap)); } size_type sum = 0; do { bool ok = 1; for (int k = 0; k < dim; ++k) if ((ns[k] >= nbsub[k]) || (pts1[k] < int(ns[k])) || (pts2[k] > int(ns[k]))) { ok = false; break; } if (ok) { size_type ind = ns[0]; for (int k=1; k < dim; ++k) ind += ns[k]*mult[k]; subs[ind][i] = void_type(); } for (int k = 0; k < dim; ++k) { if (na[k] < 2) { na[k]++; ns[k]++; ++sum; break; } na[k] = 0; ns[k] -= 2; sum -= 2; } } while (sum); } // delete too small domains. size_type nbmaxinsub = 0; for (size_type i = 0; i < nbtotsub; ++i) nbmaxinsub = std::max(nbmaxinsub, subs[i].size()); std::fill(ns.begin(), ns.end(), size_type(0)); for (size_type i = 0; i < nbtotsub; ++i) { if (subs[i].size() > 0 && subs[i].size() < nbmaxinsub / 10) { for (int k = 0; k < dim; ++k) nu[k] = ns[k]; size_type nbmax = 0, imax = 0; for (int l = 0; l < dim; ++l) { nu[l]--; for (int m = 0; m < 2; ++m, nu[l]+=2) { bool ok = true; for (int k = 0; k < dim && ok; ++k) if (nu[k] >= nbsub[k]) ok = false; if (ok) { size_type ind = ns[0]; for (int k=1; k < dim; ++k) ind += ns[k]*mult[k]; if (subs[ind].size() > nbmax) { nbmax = subs[ind].size(); imax = ind; } } } nu[l]--; } if (nbmax > subs[i].size()) { for (map_type::iterator it=subs[i].begin(); it!=subs[i].end(); ++it) subs[imax][it->first] = void_type(); subs[i].clear(); } } for (int k = 0; k < dim; ++k) { ns[k]++; if (ns[k] < nbsub[k]) break; ns[k] = 0; } } // delete empty domains. size_type effnb = 0; for (size_type i = 0; i < nbtotsub; ++i) { if (subs[i].size() > 0) { if (i != effnb) std::swap(subs[i], subs[effnb]); ++effnb; } } // build matrices subs.resize(effnb); vB.resize(effnb); for (size_type i = 0; i < effnb; ++i) { clear(vB[i]); resize(vB[i], nbpts, subs[i].size()); size_type j = 0; for (map_type::iterator it=subs[i].begin(); it!=subs[i].end(); ++it, ++j) vB[i](it->first, j) = value_type(1); } } } #endif