#include "ANIM.hpp" #include "hecl/Blender/Connection.hpp" namespace DataSpec::DNAMP2 { using ANIMOutStream = hecl::blender::ANIMOutStream; void ANIM::IANIM::sendANIMToBlender(hecl::blender::PyOutStream& os, const DNAANIM::RigInverter<CINF>& rig) const { os.format(FMT_STRING( "act.hecl_fps = round({})\n" "act.hecl_looping = {}\n"), (1.0f / mainInterval), looping ? "True" : "False"); auto kit = chanKeys.begin(); std::vector<zeus::CQuaternion> fixedRotKeys; std::vector<zeus::CVector3f> fixedTransKeys; for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { const std::string* bName = rig.getCINF().getBoneNameFromId(bone.first); if (!bName) { if (std::get<0>(bone.second)) ++kit; if (std::get<1>(bone.second)) ++kit; if (std::get<2>(bone.second)) ++kit; continue; } os.format(FMT_STRING("bone_string = '{}'\n"), *bName); os << "action_group = act.groups.new(bone_string)\n" "\n"; if (std::get<0>(bone.second)) os << "rotCurves = []\n" "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=0, " "action_group=bone_string))\n" "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=1, " "action_group=bone_string))\n" "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=2, " "action_group=bone_string))\n" "rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=3, " "action_group=bone_string))\n" "\n"; if (std::get<1>(bone.second)) os << "transCurves = []\n" "transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=0, " "action_group=bone_string))\n" "transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=1, " "action_group=bone_string))\n" "transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=2, " "action_group=bone_string))\n" "\n"; if (std::get<2>(bone.second)) os << "scaleCurves = []\n" "scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=0, " "action_group=bone_string))\n" "scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=1, " "action_group=bone_string))\n" "scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=2, " "action_group=bone_string))\n" "\n"; ANIMOutStream ao = os.beginANIMCurve(); if (std::get<0>(bone.second)) { const std::vector<DNAANIM::Value>& rotKeys = *kit++; fixedRotKeys.clear(); fixedRotKeys.resize(rotKeys.size()); for (int c = 0; c < 4; ++c) { size_t idx = 0; for (const DNAANIM::Value& val : rotKeys) fixedRotKeys[idx++][c] = val.simd[c]; } for (zeus::CQuaternion& rot : fixedRotKeys) rot = rig.invertRotation(bone.first, rot); for (int c = 0; c < 4; ++c) { auto frameit = frames.begin(); ao.changeCurve(ANIMOutStream::CurveType::Rotate, c, rotKeys.size()); for (const zeus::CQuaternion& val : fixedRotKeys) ao.write(*frameit++, val[c]); } } if (std::get<1>(bone.second)) { const std::vector<DNAANIM::Value>& transKeys = *kit++; fixedTransKeys.clear(); fixedTransKeys.resize(transKeys.size()); for (int c = 0; c < 3; ++c) { size_t idx = 0; for (const DNAANIM::Value& val : transKeys) fixedTransKeys[idx++][c] = val.simd[c]; } for (zeus::CVector3f& t : fixedTransKeys) t = rig.invertPosition(bone.first, t, true); for (int c = 0; c < 3; ++c) { auto frameit = frames.begin(); ao.changeCurve(ANIMOutStream::CurveType::Translate, c, fixedTransKeys.size()); for (const zeus::CVector3f& val : fixedTransKeys) ao.write(*frameit++, val[c]); } } if (std::get<2>(bone.second)) { const std::vector<DNAANIM::Value>& scaleKeys = *kit++; for (int c = 0; c < 3; ++c) { auto frameit = frames.begin(); ao.changeCurve(ANIMOutStream::CurveType::Scale, c, scaleKeys.size()); for (const DNAANIM::Value& val : scaleKeys) ao.write(*frameit++, val.simd[c]); } } } } template <> void ANIM::Enumerate<BigDNA::Read>(typename Read::StreamT& reader) { atUint32 version = reader.readUint32Big(); switch (version) { case 0: m_anim = std::make_unique<ANIM0>(); m_anim->read(reader); break; case 2: m_anim = std::make_unique<ANIM2>(); m_anim->read(reader); break; default: Log.report(logvisor::Fatal, FMT_STRING("unrecognized ANIM version")); break; } } template <> void ANIM::Enumerate<BigDNA::Write>(typename Write::StreamT& writer) { writer.writeUint32Big(m_anim->m_version); m_anim->write(writer); } template <> void ANIM::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& s) { s += 4; m_anim->binarySize(s); } std::string_view ANIM::ANIM0::DNAType() { return "ANIM0"sv; } template <> void ANIM::ANIM0::Enumerate<BigDNA::Read>(typename Read::StreamT& reader) { Header head; head.read(reader); mainInterval = head.interval; frames.clear(); frames.reserve(head.keyCount); for (size_t k = 0; k < head.keyCount; ++k) frames.push_back(k); std::map<atUint8, atUint32> boneMap; for (size_t b = 0; b < head.boneSlotCount; ++b) { atUint8 idx = reader.readUByte(); if (idx == 0xff) continue; boneMap[idx] = b; } atUint32 boneCount = reader.readUint32Big(); bones.clear(); bones.reserve(boneCount); for (size_t b = 0; b < boneCount; ++b) { bones.emplace_back(boneMap[b], std::make_tuple(false, false, false)); atUint8 idx = reader.readUByte(); if (idx != 0xff) std::get<0>(bones.back().second) = true; } boneCount = reader.readUint32Big(); for (size_t b = 0; b < boneCount; ++b) { atUint8 idx = reader.readUByte(); if (idx != 0xff) std::get<1>(bones[b].second) = true; } boneCount = reader.readUint32Big(); for (size_t b = 0; b < boneCount; ++b) { atUint8 idx = reader.readUByte(); if (idx != 0xff) std::get<2>(bones[b].second) = true; } channels.clear(); chanKeys.clear(); for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { if (std::get<0>(bone.second)) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Rotation; chanKeys.emplace_back(); } if (std::get<1>(bone.second)) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Translation; chanKeys.emplace_back(); } if (std::get<2>(bone.second)) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Scale; chanKeys.emplace_back(); } } reader.readUint32Big(); auto kit = chanKeys.begin(); for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { if (std::get<0>(bone.second)) ++kit; if (std::get<1>(bone.second)) ++kit; if (std::get<2>(bone.second)) { std::vector<DNAANIM::Value>& keys = *kit++; for (size_t k = 0; k < head.keyCount; ++k) keys.emplace_back(reader.readVec3fBig()); } } reader.readUint32Big(); kit = chanKeys.begin(); for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { if (std::get<0>(bone.second)) { std::vector<DNAANIM::Value>& keys = *kit++; for (size_t k = 0; k < head.keyCount; ++k) keys.emplace_back(reader.readVec4fBig()); } if (std::get<1>(bone.second)) ++kit; if (std::get<2>(bone.second)) ++kit; } reader.readUint32Big(); kit = chanKeys.begin(); for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { if (std::get<0>(bone.second)) ++kit; if (std::get<1>(bone.second)) { std::vector<DNAANIM::Value>& keys = *kit++; for (size_t k = 0; k < head.keyCount; ++k) keys.emplace_back(reader.readVec3fBig()); } if (std::get<2>(bone.second)) ++kit; } } template <> void ANIM::ANIM0::Enumerate<BigDNA::Write>(typename Write::StreamT& writer) { Header head; head.unk0 = 0; head.unk1 = 0; head.unk2 = 0; head.keyCount = frames.size(); head.duration = head.keyCount * mainInterval; head.interval = mainInterval; atUint32 maxId = 0; for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) maxId = std::max(maxId, bone.first); head.boneSlotCount = maxId + 1; head.write(writer); for (size_t s = 0; s < head.boneSlotCount; ++s) { size_t boneIdx = 0; bool found = false; for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { if (s == bone.first) { writer.writeUByte(boneIdx); found = true; break; } ++boneIdx; } if (!found) writer.writeUByte(0xff); } writer.writeUint32Big(bones.size()); size_t boneIdx = 0; size_t rotKeyCount = 0; for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { if (std::get<0>(bone.second)) { writer.writeUByte(boneIdx); ++rotKeyCount; } else writer.writeUByte(0xff); ++boneIdx; } writer.writeUint32Big(bones.size()); boneIdx = 0; size_t transKeyCount = 0; for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { if (std::get<1>(bone.second)) { writer.writeUByte(boneIdx); ++transKeyCount; } else writer.writeUByte(0xff); ++boneIdx; } writer.writeUint32Big(bones.size()); boneIdx = 0; size_t scaleKeyCount = 0; for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { if (std::get<2>(bone.second)) { writer.writeUByte(boneIdx); ++scaleKeyCount; } else writer.writeUByte(0xff); ++boneIdx; } writer.writeUint32Big(scaleKeyCount * head.keyCount); auto cit = chanKeys.begin(); for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { if (std::get<0>(bone.second)) ++cit; if (std::get<1>(bone.second)) ++cit; if (std::get<2>(bone.second)) { const std::vector<DNAANIM::Value>& keys = *cit++; auto kit = keys.begin(); for (size_t k = 0; k < head.keyCount; ++k) writer.writeVec3fBig(atVec3f{(*kit++).simd}); } } writer.writeUint32Big(rotKeyCount * head.keyCount); cit = chanKeys.begin(); for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { if (std::get<0>(bone.second)) { const std::vector<DNAANIM::Value>& keys = *cit++; auto kit = keys.begin(); for (size_t k = 0; k < head.keyCount; ++k) writer.writeVec4fBig(atVec4f{(*kit++).simd}); } if (std::get<1>(bone.second)) ++cit; if (std::get<2>(bone.second)) ++cit; } writer.writeUint32Big(transKeyCount * head.keyCount); cit = chanKeys.begin(); for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { if (std::get<0>(bone.second)) ++cit; if (std::get<1>(bone.second)) { const std::vector<DNAANIM::Value>& keys = *cit++; auto kit = keys.begin(); for (size_t k = 0; k < head.keyCount; ++k) writer.writeVec3fBig(atVec3f{(*kit++).simd}); } if (std::get<2>(bone.second)) ++cit; } } template <> void ANIM::ANIM0::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& s) { Header head; atUint32 maxId = 0; for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) maxId = std::max(maxId, bone.first); head.binarySize(s); s += maxId + 1; s += bones.size() * 3 + 12; s += 12; for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { if (std::get<0>(bone.second)) s += head.keyCount * 16; if (std::get<1>(bone.second)) s += head.keyCount * 12; if (std::get<2>(bone.second)) s += head.keyCount * 12; } } std::string_view ANIM::ANIM2::DNAType() { return "ANIM2"sv; } template <> void ANIM::ANIM2::Enumerate<BigDNA::Read>(typename Read::StreamT& reader) { Header head; head.read(reader); mainInterval = head.interval; looping = bool(head.looping); WordBitmap keyBmp; keyBmp.read(reader, head.keyBitmapBitCount); frames.clear(); atUint32 frameAccum = 0; for (bool bit : keyBmp) { if (bit) frames.push_back(frameAccum); ++frameAccum; } reader.seek(4); bones.clear(); bones.reserve(head.boneChannelCount); channels.clear(); channels.reserve(head.boneChannelCount); atUint16 keyframeCount = 0; for (size_t b = 0; b < head.boneChannelCount; ++b) { ChannelDesc desc; desc.read(reader); bones.emplace_back(desc.id, std::make_tuple(desc.keyCount1 != 0, desc.keyCount2 != 0, desc.keyCount3 != 0)); if (desc.keyCount1) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Rotation; chan.i[0] = desc.initRX; chan.q[0] = desc.qRX; chan.i[1] = desc.initRY; chan.q[1] = desc.qRY; chan.i[2] = desc.initRZ; chan.q[2] = desc.qRZ; } keyframeCount = std::max(keyframeCount, desc.keyCount1); if (desc.keyCount2) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Translation; chan.i[0] = desc.initTX; chan.q[0] = desc.qTX; chan.i[1] = desc.initTY; chan.q[1] = desc.qTY; chan.i[2] = desc.initTZ; chan.q[2] = desc.qTZ; } keyframeCount = std::max(keyframeCount, desc.keyCount2); if (desc.keyCount3) { channels.emplace_back(); DNAANIM::Channel& chan = channels.back(); chan.type = DNAANIM::Channel::Type::Scale; chan.i[0] = desc.initSX; chan.q[0] = desc.qSX; chan.i[1] = desc.initSY; chan.q[1] = desc.qSY; chan.i[2] = desc.initSZ; chan.q[2] = desc.qSZ; } keyframeCount = std::max(keyframeCount, desc.keyCount3); } size_t bsSize = DNAANIM::ComputeBitstreamSize(keyframeCount, channels); std::unique_ptr<atUint8[]> bsData = reader.readUBytes(bsSize); DNAANIM::BitstreamReader bsReader; chanKeys = bsReader.read(bsData.get(), keyframeCount, channels, head.rotDiv, head.translationMult, head.scaleMult); } template <> void ANIM::ANIM2::Enumerate<BigDNA::Write>(typename Write::StreamT& writer) { /* TODO: conform to MP1 ANIM3 */ Header head; head.unk1 = 1; head.looping = looping; head.interval = mainInterval; head.rootBoneId = 0; head.scaleMult = 0.f; WordBitmap keyBmp; size_t frameCount = 0; for (atUint32 frame : frames) { while (keyBmp.getBit(frame)) ++frame; keyBmp.setBit(frame); frameCount = frame + 1; } head.keyBitmapBitCount = keyBmp.getBitCount(); head.duration = frameCount * mainInterval; head.boneChannelCount = bones.size(); size_t keyframeCount = frames.size(); std::vector<DNAANIM::Channel> qChannels = channels; DNAANIM::BitstreamWriter bsWriter; size_t bsSize; std::unique_ptr<atUint8[]> bsData = bsWriter.write(chanKeys, keyframeCount, qChannels, m_version == 3 ? 0x7fffff : 0x7fff, head.rotDiv, head.translationMult, head.scaleMult, bsSize); /* TODO: Figure out proper scratch size computation */ head.scratchSize = keyframeCount * channels.size() * 16; head.write(writer); keyBmp.write(writer); writer.writeUint32Big(head.boneChannelCount); auto cit = qChannels.begin(); for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { ChannelDesc desc; if (std::get<0>(bone.second)) { DNAANIM::Channel& chan = *cit++; desc.keyCount1 = keyframeCount; desc.initRX = chan.i[0]; desc.qRX = chan.q[0]; desc.initRY = chan.i[1]; desc.qRY = chan.q[1]; desc.initRZ = chan.i[2]; desc.qRZ = chan.q[2]; } if (std::get<1>(bone.second)) { DNAANIM::Channel& chan = *cit++; desc.keyCount2 = keyframeCount; desc.initTX = chan.i[0]; desc.qTX = chan.q[0]; desc.initTY = chan.i[1]; desc.qTY = chan.q[1]; desc.initTZ = chan.i[2]; desc.qTZ = chan.q[2]; } if (std::get<2>(bone.second)) { DNAANIM::Channel& chan = *cit++; desc.keyCount3 = keyframeCount; desc.initSX = chan.i[0]; desc.qSX = chan.q[0]; desc.initSY = chan.i[1]; desc.qSY = chan.q[1]; desc.initSZ = chan.i[2]; desc.qSZ = chan.q[2]; } } writer.writeUBytes(bsData.get(), bsSize); } template <> void ANIM::ANIM2::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& s) { Header head; WordBitmap keyBmp; for (atUint32 frame : frames) { while (keyBmp.getBit(frame)) ++frame; keyBmp.setBit(frame); } head.binarySize(s); keyBmp.binarySize(s); s += 4; for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) { s += 7; if (std::get<0>(bone.second)) s += 9; if (std::get<1>(bone.second)) s += 9; if (std::get<2>(bone.second)) s += 9; } s += DNAANIM::ComputeBitstreamSize(frames.size(), channels); } } // namespace DataSpec::DNAMP2