/* -*- c++ -*- (enables emacs c++ mode) */ /*=========================================================================== Copyright (C) 2003-2017 Yves Renard, Julien Pommier This file is a part of GetFEM++ GetFEM++ is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version along with the GCC Runtime Library Exception either version 3.1 or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License and GCC Runtime Library Exception for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. As a special exception, you may use this file as it is a part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU Lesser General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU Lesser General Public License. ===========================================================================*/ /**@file gmm_MUMPS_interface.h @author Yves Renard <Yves.Renard@insa-lyon.fr>, @author Julien Pommier <Julien.Pommier@insa-toulouse.fr> @date December 8, 2005. @brief Interface with MUMPS (LU direct solver for sparse matrices). */ #if defined(GMM_USES_MUMPS) || defined(HAVE_DMUMPS_C_H) #ifndef GMM_MUMPS_INTERFACE_H #define GMM_MUMPS_INTERFACE_H #include "gmm_kernel.h" extern "C" { #include <smumps_c.h> #undef F_INT #undef F_DOUBLE #undef F_DOUBLE2 #include <dmumps_c.h> #undef F_INT #undef F_DOUBLE #undef F_DOUBLE2 #include <cmumps_c.h> #undef F_INT #undef F_DOUBLE #undef F_DOUBLE2 #include <zmumps_c.h> #undef F_INT #undef F_DOUBLE #undef F_DOUBLE2 } namespace gmm { #define ICNTL(I) icntl[(I)-1] #define INFO(I) info[(I)-1] #define INFOG(I) infog[(I)-1] #define RINFOG(I) rinfog[(I)-1] template <typename T> struct ij_sparse_matrix { std::vector<int> irn; std::vector<int> jcn; std::vector<T> a; bool sym; template <typename L> void store(const L& l, size_type i) { typename linalg_traits<L>::const_iterator it = vect_const_begin(l), ite = vect_const_end(l); for (; it != ite; ++it) { int ir = (int)i + 1, jc = (int)it.index() + 1; if (*it != T(0) && (!sym || ir >= jc)) { irn.push_back(ir); jcn.push_back(jc); a.push_back(*it); } } } template <typename L> void build_from(const L& l, row_major) { for (size_type i = 0; i < mat_nrows(l); ++i) store(mat_const_row(l, i), i); } template <typename L> void build_from(const L& l, col_major) { for (size_type i = 0; i < mat_ncols(l); ++i) store(mat_const_col(l, i), i); irn.swap(jcn); } template <typename L> ij_sparse_matrix(const L& A, bool sym_) { size_type nz = nnz(A); sym = sym_; irn.reserve(nz); jcn.reserve(nz); a.reserve(nz); build_from(A, typename principal_orientation_type<typename linalg_traits<L>::sub_orientation>::potype()); } }; /* ********************************************************************* */ /* MUMPS solve interface */ /* ********************************************************************* */ template <typename T> struct mumps_interf {}; template <> struct mumps_interf<float> { typedef SMUMPS_STRUC_C MUMPS_STRUC_C; typedef float value_type; static void mumps_c(MUMPS_STRUC_C &id) { smumps_c(&id); } }; template <> struct mumps_interf<double> { typedef DMUMPS_STRUC_C MUMPS_STRUC_C; typedef double value_type; static void mumps_c(MUMPS_STRUC_C &id) { dmumps_c(&id); } }; template <> struct mumps_interf<std::complex<float> > { typedef CMUMPS_STRUC_C MUMPS_STRUC_C; typedef mumps_complex value_type; static void mumps_c(MUMPS_STRUC_C &id) { cmumps_c(&id); } }; template <> struct mumps_interf<std::complex<double> > { typedef ZMUMPS_STRUC_C MUMPS_STRUC_C; typedef mumps_double_complex value_type; static void mumps_c(MUMPS_STRUC_C &id) { zmumps_c(&id); } }; template <typename MUMPS_STRUCT> static inline bool mumps_error_check(MUMPS_STRUCT &id) { if (id.INFO(1) < 0) { switch (id.INFO(1)) { case -2: GMM_ASSERT1(false, "Solve with MUMPS failed: NZ = " << id.INFO(2) << " is out of range"); case -6 : case -10 : GMM_WARNING1("Solve with MUMPS failed: matrix is singular"); return false; case -9: GMM_ASSERT1(false, "Solve with MUMPS failed: error " << id.INFO(1) << ", increase ICNTL(14)"); case -13 : GMM_ASSERT1(false, "Solve with MUMPS failed: not enough memory"); default : GMM_ASSERT1(false, "Solve with MUMPS failed with error " << id.INFO(1)); } } return true; } /** MUMPS solve interface * Works only with sparse or skyline matrices */ template <typename MAT, typename VECTX, typename VECTB> bool MUMPS_solve(const MAT &A, const VECTX &X_, const VECTB &B, bool sym = false, bool distributed = false) { VECTX &X = const_cast<VECTX &>(X_); typedef typename linalg_traits<MAT>::value_type T; typedef typename mumps_interf<T>::value_type MUMPS_T; GMM_ASSERT2(gmm::mat_nrows(A) == gmm::mat_ncols(A), "Non-square matrix"); std::vector<T> rhs(gmm::vect_size(B)); gmm::copy(B, rhs); ij_sparse_matrix<T> AA(A, sym); const int JOB_INIT = -1; const int JOB_END = -2; const int USE_COMM_WORLD = -987654; typename mumps_interf<T>::MUMPS_STRUC_C id; int rank(0); #ifdef GMM_USES_MPI MPI_Comm_rank(MPI_COMM_WORLD, &rank); #endif id.job = JOB_INIT; id.par = 1; id.sym = sym ? 2 : 0; id.comm_fortran = USE_COMM_WORLD; mumps_interf<T>::mumps_c(id); if (rank == 0 || distributed) { id.n = int(gmm::mat_nrows(A)); if (distributed) { id.nz_loc = int(AA.irn.size()); id.irn_loc = &(AA.irn[0]); id.jcn_loc = &(AA.jcn[0]); id.a_loc = (MUMPS_T*)(&(AA.a[0])); } else { id.nz = int(AA.irn.size()); id.irn = &(AA.irn[0]); id.jcn = &(AA.jcn[0]); id.a = (MUMPS_T*)(&(AA.a[0])); } if (rank == 0) id.rhs = (MUMPS_T*)(&(rhs[0])); } id.ICNTL(1) = -1; // output stream for error messages id.ICNTL(2) = -1; // output stream for other messages id.ICNTL(3) = -1; // output stream for global information id.ICNTL(4) = 0; // verbosity level if (distributed) id.ICNTL(5) = 0; // assembled input matrix (default) id.ICNTL(14) += 80; /* small boost to the workspace size as we have encountered some problem who did not fit in the default settings of mumps.. by default, ICNTL(14) = 15 or 20 */ //cout << "ICNTL(14): " << id.ICNTL(14) << "\n"; if (distributed) id.ICNTL(18) = 3; // strategy for distributed input matrix // id.ICNTL(22) = 1; /* enables out-of-core support */ id.job = 6; mumps_interf<T>::mumps_c(id); bool ok = mumps_error_check(id); id.job = JOB_END; mumps_interf<T>::mumps_c(id); #ifdef GMM_USES_MPI MPI_Bcast(&(rhs[0]),id.n,gmm::mpi_type(T()),0,MPI_COMM_WORLD); #endif gmm::copy(rhs, X); return ok; } /** MUMPS solve interface for distributed matrices * Works only with sparse or skyline matrices */ template <typename MAT, typename VECTX, typename VECTB> bool MUMPS_distributed_matrix_solve(const MAT &A, const VECTX &X_, const VECTB &B, bool sym = false) { return MUMPS_solve(A, X_, B, sym, true); } template<typename T> inline T real_or_complex(std::complex<T> a) { return a.real(); } template<typename T> inline T real_or_complex(T &a) { return a; } /** Evaluate matrix determinant with MUMPS * Works only with sparse or skyline matrices */ template <typename MAT, typename T = typename linalg_traits<MAT>::value_type> T MUMPS_determinant(const MAT &A, int &exponent, bool sym = false, bool distributed = false) { exponent = 0; typedef typename mumps_interf<T>::value_type MUMPS_T; typedef typename number_traits<T>::magnitude_type R; GMM_ASSERT2(gmm::mat_nrows(A) == gmm::mat_ncols(A), "Non-square matrix"); ij_sparse_matrix<T> AA(A, sym); const int JOB_INIT = -1; const int JOB_END = -2; const int USE_COMM_WORLD = -987654; typename mumps_interf<T>::MUMPS_STRUC_C id; int rank(0); #ifdef GMM_USES_MPI MPI_Comm_rank(MPI_COMM_WORLD, &rank); #endif id.job = JOB_INIT; id.par = 1; id.sym = sym ? 2 : 0; id.comm_fortran = USE_COMM_WORLD; mumps_interf<T>::mumps_c(id); if (rank == 0 || distributed) { id.n = int(gmm::mat_nrows(A)); if (distributed) { id.nz_loc = int(AA.irn.size()); id.irn_loc = &(AA.irn[0]); id.jcn_loc = &(AA.jcn[0]); id.a_loc = (MUMPS_T*)(&(AA.a[0])); } else { id.nz = int(AA.irn.size()); id.irn = &(AA.irn[0]); id.jcn = &(AA.jcn[0]); id.a = (MUMPS_T*)(&(AA.a[0])); } } id.ICNTL(1) = -1; // output stream for error messages id.ICNTL(2) = -1; // output stream for other messages id.ICNTL(3) = -1; // output stream for global information id.ICNTL(4) = 0; // verbosity level if (distributed) id.ICNTL(5) = 0; // assembled input matrix (default) // id.ICNTL(14) += 80; // small boost to the workspace size if (distributed) id.ICNTL(18) = 3; // strategy for distributed input matrix id.ICNTL(31) = 1; // only factorization, no solution to follow id.ICNTL(33) = 1; // request determinant calculation id.job = 4; // abalysis (job=1) + factorization (job=2) mumps_interf<T>::mumps_c(id); mumps_error_check(id); T det = real_or_complex(std::complex<R>(id.RINFOG(12),id.RINFOG(13))); exponent = id.INFOG(34); id.job = JOB_END; mumps_interf<T>::mumps_c(id); return det; } #undef ICNTL #undef INFO #undef INFOG #undef RINFOG } #endif // GMM_MUMPS_INTERFACE_H #endif // GMM_USES_MUMPS