#ifndef __DNACOMMON_MAPA_HPP__ #define __DNACOMMON_MAPA_HPP__ #include "DNACommon.hpp" #include "GX.hpp" namespace Retro { namespace DNAMAPA { struct MAPA : BigDNA { Delete _d; Value magic; Value version; struct IMAPAHeader : BigDNA { Delete _d; virtual atUint32 mappableObjectCount() const=0; virtual atUint32 vertexCount() const=0; virtual atUint32 surfaceCount() const=0; }; struct HeaderMP1 : IMAPAHeader { DECL_DNA Value unknown1; Value unknown2; Value boundingBox[2]; Value moCount; Value vtxCount; Value surfCount; virtual atUint32 mappableObjectCount() const { return moCount;} virtual atUint32 vertexCount() const { return vtxCount; } virtual atUint32 surfaceCount() const { return surfCount; } }; struct HeaderMP2 : IMAPAHeader { DECL_DNA Value unknown1; Value unknown2; Value boundingBox[2]; Value unknown3; Value unknown4; Value unknown5; Value moCount; Value vtxCount; Value surfCount; atUint32 mappableObjectCount() const { return moCount;} atUint32 vertexCount() const { return vtxCount; } atUint32 surfaceCount() const { return surfCount; } }; struct HeaderMP3 : IMAPAHeader { DECL_DNA Value unknown1; Value unknown2; Value boundingBox[2]; Value unknown3; Value unknown4; Value unknown5; Value unknown6; Value moCount; Value vtxCount; Value surfCount; Value internalNameLength; Value unknown7; String internalName; atUint32 mappableObjectCount() const { return moCount;} atUint32 vertexCount() const { return vtxCount; } atUint32 surfaceCount() const { return surfCount; } }; void read(Athena::io::IStreamReader& __dna_reader) { /* magic */ magic = __dna_reader.readUint32Big(); if (magic != 0xDEADD00D) { LogDNACommon.report(LogVisor::Error, "invalid MAPA magic"); return; } /* version */ version = __dna_reader.readUint32Big(); if (version == 2) header.reset(new HeaderMP1); else if (version == 3) header.reset(new HeaderMP2); else if (version == 5) header.reset(new HeaderMP3); else { LogDNACommon.report(LogVisor::Error, "invalid MAPA version"); return; } header->read(__dna_reader); for (atUint32 i = 0; i < header->mappableObjectCount(); i++) { std::unique_ptr mo = nullptr; if (version != 5) mo.reset(new MappableObjectMP1_2); else mo.reset(new MappableObjectMP3); mo->read(__dna_reader); mappableObjects.push_back(std::move(mo)); } /* vertices */ __dna_reader.enumerateBig(vertices, header->vertexCount()); /* surfaceHeaders */ __dna_reader.enumerate(surfaceHeaders, header->surfaceCount()); /* surfaces */ __dna_reader.enumerate(surfaces, header->surfaceCount()); } void write(Athena::io::IStreamWriter& __dna_writer) const { /* magic */ __dna_writer.writeUint32Big(magic); /* version */ __dna_writer.writeUint32Big(version); header->write(__dna_writer); /* mappableObjects */ for (const std::unique_ptr& mo : mappableObjects) mo->write(__dna_writer); /* vertices */ __dna_writer.enumerateBig(vertices); /* surfaceHeaders */ __dna_writer.enumerate(surfaceHeaders); /* surfaces */ __dna_writer.enumerate(surfaces); } size_t binarySize(size_t __isz) const { __isz = header->binarySize(__isz); for (const std::unique_ptr& mo : mappableObjects) __isz = mo->binarySize(__isz); __isz += vertices.size() * 12; __isz = __EnumerateSize(__isz, surfaceHeaders); __isz = __EnumerateSize(__isz, surfaces); return __isz + 8; } std::unique_ptr header; struct IMappableObject : BigDNA { Delete _d; enum class Type : atUint32 { BlueDoor = 0, ShieldDoor = 1, IceDoor = 2, WaveDoor = 3, PlasmaDoor = 4, BigDoor1 = 5, BigDoor2 = 6, IceDoorCeiling = 7, IceDoorFloor = 8, WaveDoorCeiling = 9, WaveDoorFloor = 10, IceDoorFloor2 = 13, WaveDoorFloor2 = 14, DownArrowYellow = 27, /* Maintenance Tunnel */ UpArrowYellow = 28, /* Phazon Processing Center */ DownArrowGreen = 29, /* Elevator A */ UpArrowGreen = 30, /* Elite Control Access */ DownArrowRed = 31, /* Elevator B */ UpArrowRed = 32, /* Fungal Hall Access */ TransportLift = 33, SaveStation = 34, MissileStation = 37 }; virtual ~IMappableObject() {} }; struct MappableObjectMP1_2 : IMappableObject { DECL_DNA Value type; Value unknown1; Value sclyId; Seek seek1; Value transformMtx[3]; Seek seek2; virtual ~MappableObjectMP1_2() {} }; struct MappableObjectMP3 : IMappableObject { DECL_DNA Value type; Value unknown1; Value sclyId; Buffer unknownHash; Seek seek1; Value transformMtx[3]; Seek seek2; virtual ~MappableObjectMP3() {} }; std::vector> mappableObjects; VectorvertexCount())> vertices; struct SurfaceHeader : BigDNA { DECL_DNA Value normal; Value centroid; Value polyOff; Value edgeOff; }; VectorsurfaceCount())> surfaceHeaders; struct Surface : BigDNA { DECL_DNA Value primitiveCount; struct Primitive : BigDNA { DECL_DNA Value type; Value indexCount; Vector indices; Align<4> align; }; Vector primitives; Value borderCount; struct Border : BigDNA { DECL_DNA Value indexCount; Vector indices; Align<4> align; }; Vector borders; }; VectorsurfaceCount())> surfaces; }; template bool ReadMAPAToBlender(HECL::BlenderConnection& conn, const MAPA& mapa, const HECL::ProjectPath& outPath, PAKRouter& pakRouter, const typename PAKRouter::EntryType& entry, bool force) { /* Rename MAPA for consistency */ HECL::ProjectPath mapaPath(outPath.getParentPath(), _S("!map.blend")); if (!force && mapaPath.getPathType() == HECL::ProjectPath::Type::File) return true; if (!conn.createBlend(mapaPath, HECL::BlenderConnection::BlendType::MapArea)) return false; HECL::BlenderConnection::PyOutStream os = conn.beginPythonOut(true); os << "import bpy, bmesh\n" "from mathutils import Matrix\n" "\n" "bpy.types.Object.retro_mappable_type = bpy.props.IntProperty(name='Retro: MAPA object type', default=-1)\n" "bpy.types.Object.retro_mappable_unk = bpy.props.IntProperty(name='Retro: MAPA object unk')\n" "bpy.types.Object.retro_mappable_sclyid = bpy.props.StringProperty(name='Retro: MAPA object SCLY ID')\n" "\n" "# Clear Scene\n" "for ob in bpy.data.objects:\n" " bpy.context.scene.objects.unlink(ob)\n" " bpy.data.objects.remove(ob)\n" "\n" "def add_triangle(bm, verts):\n" " verts = [bm.verts[vi] for vi in verts]\n" " face = bm.faces.get(verts)\n" " if face:\n" " face = face.copy()\n" " bm.verts.ensure_lookup_table()\n" " face.normal_flip()\n" " else:\n" " bm.faces.new(verts)\n" "\n" "def add_border(bm, verts):\n" " verts = [bm.verts[vi] for vi in verts]\n" " edge = bm.edges.get(verts)\n" " if not edge:\n" " edge = bm.edges.new(verts)\n" " edge.seam = True\n" "\n"; os.format("bpy.context.scene.name = 'MAPA_%s'\n", entry.id.toString().c_str()); /* Add empties representing MappableObjects */ int moIdx = 0; for (const std::unique_ptr& mo : mapa.mappableObjects) { const MAPA::MappableObjectMP1_2* moMP12 = dynamic_cast(mo.get()); if (moMP12) { os.format("obj = bpy.data.objects.new('MAPOBJ_%02d', None)\n" "bpy.context.scene.objects.link(obj)\n" "obj.retro_mappable_type = %d\n" "obj.retro_mappable_unk = %d\n" "obj.retro_mappable_sclyid = '%08X'\n" "mtx = Matrix(((%f,%f,%f,%f),(%f,%f,%f,%f),(%f,%f,%f,%f),(0.0,0.0,0.0,1.0)))\n" "mtxd = mtx.decompose()\n" "obj.rotation_mode = 'QUATERNION'\n" "obj.location = mtxd[0]\n" "obj.rotation_quaternion = mtxd[1]\n" "obj.scale = mtxd[2]\n", moIdx, moMP12->type, moMP12->unknown1, moMP12->sclyId, moMP12->transformMtx[0].vec[0], moMP12->transformMtx[0].vec[1], moMP12->transformMtx[0].vec[2], moMP12->transformMtx[0].vec[3], moMP12->transformMtx[1].vec[0], moMP12->transformMtx[1].vec[1], moMP12->transformMtx[1].vec[2], moMP12->transformMtx[1].vec[3], moMP12->transformMtx[2].vec[0], moMP12->transformMtx[2].vec[1], moMP12->transformMtx[2].vec[2], moMP12->transformMtx[2].vec[3]); ++moIdx; continue; } const MAPA::MappableObjectMP3* moMP3 = dynamic_cast(mo.get()); if (moMP3) { os.format("obj = bpy.data.objects.new('MAPOBJ_%02d', None)\n" "bpy.context.scene.objects.link(obj)\n" "obj.retro_mappable_type = %d\n" "obj.retro_mappable_unk = %d\n" "obj.retro_mappable_sclyid = '%08X'\n" "mtx = Matrix(((%f,%f,%f,%f),(%f,%f,%f,%f),(%f,%f,%f,%f),(0.0,0.0,0.0,1.0)))\n" "mtxd = mtx.decompose()\n" "obj.rotation_mode = 'QUATERNION'\n" "obj.location = mtxd[0]\n" "obj.rotation_quaternion = mtxd[1]\n" "obj.scale = mtxd[2]\n", moIdx, moMP3->type, moMP3->unknown1, moMP3->sclyId, moMP3->transformMtx[0].vec[0], moMP3->transformMtx[0].vec[1], moMP3->transformMtx[0].vec[2], moMP3->transformMtx[0].vec[3], moMP3->transformMtx[1].vec[0], moMP3->transformMtx[1].vec[1], moMP3->transformMtx[1].vec[2], moMP3->transformMtx[1].vec[3], moMP3->transformMtx[2].vec[0], moMP3->transformMtx[2].vec[1], moMP3->transformMtx[2].vec[2], moMP3->transformMtx[2].vec[3]); ++moIdx; continue; } } os << "# Begin bmesh\n" "bm = bmesh.new()\n" "\n"; /* Read in verts */ for (const atVec3f& vert : mapa.vertices) os.format("bm.verts.new((%f,%f,%f))\n", vert.vec[0], vert.vec[1], vert.vec[2]); os << "bm.verts.ensure_lookup_table()\n"; /* Read in surfaces */ for (const typename MAPA::Surface& surf : mapa.surfaces) { for (const typename MAPA::Surface::Primitive& prim : surf.primitives) { auto iit = prim.indices.cbegin(); /* 3 Prim Verts to start */ int c = 0; unsigned int primVerts[3] = { *iit++, *iit++, *iit++ }; if (GX::Primitive(prim.type) == GX::TRIANGLESTRIP) { atUint8 flip = 0; for (size_t v=0 ; v= prim.indexCount - 3); /* Advance one prim vert */ if (peek) primVerts[c%3] = *iit; else primVerts[c%3] = *iit++; ++c; } } else if (GX::Primitive(prim.type) == GX::TRIANGLES) { for (size_t v=0 ; v= prim.indexCount) break; /* Advance 3 Prim Verts */ for (int pv=0 ; pv<3 ; ++pv) primVerts[pv] = *iit++; } } } for (const typename MAPA::Surface::Border& border : surf.borders) { auto iit = border.indices.cbegin(); for (size_t i=0 ; i