#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hecl/Blender/Connection.hpp" #include "hecl/Blender/FindBlender.hpp" #include "hecl/Blender/Token.hpp" #include "hecl/Database.hpp" #include "hecl/hecl.hpp" #include "hecl/SteamFinder.hpp" #include "MeshOptimizer.hpp" #include #include #if _WIN32 #include #include #else #include #endif #undef min #undef max namespace std { template <> struct hash> { std::size_t operator()(const std::pair& val) const noexcept { /* this will potentially truncate the second value if 32-bit size_t, * however, its application here is intended to operate in 16-bit indices */ return val.first | (val.second << 16); } }; } // namespace std using namespace std::literals; namespace hecl::blender { logvisor::Module BlenderLog("hecl::blender::Connection"); Token SharedBlenderToken; extern "C" uint8_t HECL_BLENDERSHELL[]; extern "C" size_t HECL_BLENDERSHELL_SZ; extern "C" uint8_t HECL_ADDON[]; extern "C" size_t HECL_ADDON_SZ; extern "C" uint8_t HECL_STARTUP[]; extern "C" size_t HECL_STARTUP_SZ; static void InstallBlendershell(const char* path) { auto fp = hecl::FopenUnique(path, "w"); if (fp == nullptr) { BlenderLog.report(logvisor::Fatal, FMT_STRING("unable to open {} for writing"), path); } std::fwrite(HECL_BLENDERSHELL, 1, HECL_BLENDERSHELL_SZ, fp.get()); } static void InstallAddon(const char* path) { auto fp = hecl::FopenUnique(path, "wb"); if (fp == nullptr) { BlenderLog.report(logvisor::Fatal, FMT_STRING("Unable to install blender addon at '{}'"), path); } std::fwrite(HECL_ADDON, 1, HECL_ADDON_SZ, fp.get()); } static int Read(int fd, void* buf, std::size_t size) { int intrCount = 0; do { auto ret = read(fd, buf, size); if (ret < 0) { if (errno == EINTR) ++intrCount; else return -1; } else return ret; } while (intrCount < 1000); return -1; } static int Write(int fd, const void* buf, std::size_t size) { int intrCount = 0; do { auto ret = write(fd, buf, size); if (ret < 0) { if (errno == EINTR) ++intrCount; else return -1; } else return ret; } while (intrCount < 1000); return -1; } static std::size_t BoundedStrLen(const char* buf, std::size_t maxLen) { std::size_t ret; for (ret = 0; ret < maxLen; ++ret) if (buf[ret] == '\0') break; return ret; } uint32_t Connection::_readStr(char* buf, uint32_t bufSz) { uint32_t readLen; int ret = Read(m_readpipe[0], &readLen, sizeof(readLen)); if (ret < 4) { BlenderLog.report(logvisor::Error, FMT_STRING("Pipe error {} {}"), ret, strerror(errno)); _blenderDied(); return 0; } if (readLen >= bufSz) { BlenderLog.report(logvisor::Fatal, FMT_STRING("Pipe buffer overrun [{}/{}]"), readLen, bufSz); *buf = '\0'; return 0; } ret = Read(m_readpipe[0], buf, readLen); if (ret < 0) { BlenderLog.report(logvisor::Fatal, FMT_STRING("{}"), strerror(errno)); return 0; } constexpr std::string_view exception_str{"EXCEPTION"}; const std::size_t readStrLen = BoundedStrLen(buf, readLen); if (readStrLen >= exception_str.size()) { if (exception_str.compare(0, exception_str.size(), std::string_view(buf, readStrLen)) == 0) { _blenderDied(); return 0; } } *(buf + readLen) = '\0'; return readLen; } uint32_t Connection::_writeStr(const char* buf, uint32_t len, int wpipe) { const auto error = [this] { _blenderDied(); return 0U; }; const int nlerr = Write(wpipe, &len, 4); if (nlerr < 4) { return error(); } const int ret = Write(wpipe, buf, len); if (ret < 0) { return error(); } return static_cast(ret); } std::size_t Connection::_readBuf(void* buf, std::size_t len) { const auto error = [this] { _blenderDied(); return 0U; }; auto* cBuf = static_cast(buf); std::size_t readLen = 0; do { const int ret = Read(m_readpipe[0], cBuf, len); if (ret < 0) { return error(); } constexpr std::string_view exception_str{"EXCEPTION"}; const std::size_t readStrLen = BoundedStrLen(static_cast(buf), len); if (readStrLen >= exception_str.size()) { if (exception_str.compare(0, exception_str.size(), std::string_view(static_cast(buf), readStrLen)) == 0) { _blenderDied(); } } readLen += ret; cBuf += ret; len -= ret; } while (len != 0); return readLen; } std::size_t Connection::_writeBuf(const void* buf, std::size_t len) { const auto error = [this] { _blenderDied(); return 0U; }; const auto* cBuf = static_cast(buf); std::size_t writeLen = 0; do { const int ret = Write(m_writepipe[1], cBuf, len); if (ret < 0) { return error(); } writeLen += ret; cBuf += ret; len -= ret; } while (len != 0); return writeLen; } ProjectPath Connection::_readPath() { std::string path = _readStdString(); if (!path.empty()) { std::string meshPathRel = getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(path); return ProjectPath(getBlendPath().getProject().getProjectWorkingPath(), meshPathRel); } return {}; } void Connection::_closePipe() { close(m_readpipe[0]); close(m_writepipe[1]); #ifdef _WIN32 CloseHandle(m_pinfo.hProcess); CloseHandle(m_pinfo.hThread); m_consoleThreadRunning = false; if (m_consoleThread.joinable()) m_consoleThread.join(); #endif } void Connection::_blenderDied() { std::this_thread::sleep_for(std::chrono::milliseconds(100)); auto errFp = hecl::FopenUnique(m_errPath.c_str(), "r"); if (errFp != nullptr) { std::fseek(errFp.get(), 0, SEEK_END); const int64_t len = hecl::FTell(errFp.get()); if (len != 0) { std::fseek(errFp.get(), 0, SEEK_SET); const auto buf = std::make_unique(len + 1); std::fread(buf.get(), 1, len, errFp.get()); BlenderLog.report(logvisor::Fatal, FMT_STRING("\n{:.{}s}"), buf.get(), len); } } BlenderLog.report(logvisor::Fatal, FMT_STRING("Blender Exception")); } static std::atomic_bool BlenderFirstInit(false); #if _WIN32 static bool RegFileExists(const char* path) { if (!path) return false; hecl::Sstat theStat; return !hecl::Stat(path, &theStat) && S_ISREG(theStat.st_mode); } #endif Connection::Connection(int verbosityLevel) { #if !WINDOWS_STORE if (hecl::VerbosityLevel >= 1) BlenderLog.report(logvisor::Info, FMT_STRING("Establishing BlenderConnection...")); /* Put hecl_blendershell.py in temp dir */ const std::string TMPDIR = GetTmpDir(); #ifndef _WIN32 signal(SIGPIPE, SIG_IGN); #endif std::string blenderShellPath(TMPDIR); blenderShellPath += "/hecl_blendershell.py"; std::string blenderAddonPath(TMPDIR); blenderAddonPath += "/hecl_blenderaddon.zip"; bool FalseCmp = false; if (BlenderFirstInit.compare_exchange_strong(FalseCmp, true)) { InstallBlendershell(blenderShellPath.c_str()); InstallAddon(blenderAddonPath.c_str()); } int installAttempt = 0; while (true) { /* Construct communication pipes */ #if _WIN32 _pipe(m_readpipe.data(), 2048, _O_BINARY); _pipe(m_writepipe.data(), 2048, _O_BINARY); HANDLE writehandle = HANDLE(_get_osfhandle(m_writepipe[0])); SetHandleInformation(writehandle, HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT); HANDLE readhandle = HANDLE(_get_osfhandle(m_readpipe[1])); SetHandleInformation(readhandle, HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT); SECURITY_ATTRIBUTES sattrs = {sizeof(SECURITY_ATTRIBUTES), nullptr, TRUE}; HANDLE consoleOutReadTmp, consoleOutWrite, consoleErrWrite, consoleOutRead; if (!CreatePipe(&consoleOutReadTmp, &consoleOutWrite, &sattrs, 1024)) BlenderLog.report(logvisor::Fatal, FMT_STRING("Error with CreatePipe")); if (!DuplicateHandle(GetCurrentProcess(), consoleOutWrite, GetCurrentProcess(), &consoleErrWrite, 0, TRUE, DUPLICATE_SAME_ACCESS)) BlenderLog.report(logvisor::Fatal, FMT_STRING("Error with DuplicateHandle")); if (!DuplicateHandle(GetCurrentProcess(), consoleOutReadTmp, GetCurrentProcess(), &consoleOutRead, // Address of new handle. 0, FALSE, // Make it uninheritable. DUPLICATE_SAME_ACCESS)) BlenderLog.report(logvisor::Fatal, FMT_STRING("Error with DupliateHandle")); if (!CloseHandle(consoleOutReadTmp)) BlenderLog.report(logvisor::Fatal, FMT_STRING("Error with CloseHandle")); #else pipe(m_readpipe.data()); pipe(m_writepipe.data()); #endif int blenderMajor = 0; int blenderMinor = 0; auto blenderBin = blender::FindBlender(blenderMajor, blenderMinor); if (!blenderBin) { BlenderLog.report(logvisor::Fatal, FMT_STRING("Failed to locate Blender installation")); } #if _WIN32 std::string cmdLine = fmt::format(FMT_STRING(" --background -P \"{}\" -- {} {} {} \"{}\""), blenderShellPath, uintptr_t(writehandle), uintptr_t(readhandle), verbosityLevel, blenderAddonPath); STARTUPINFO sinfo = {sizeof(STARTUPINFO)}; HANDLE nulHandle = CreateFileW(L"nul", GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, &sattrs, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); sinfo.dwFlags = STARTF_USESTDHANDLES; sinfo.hStdInput = nulHandle; if (verbosityLevel == 0) { sinfo.hStdError = nulHandle; sinfo.hStdOutput = nulHandle; } else { sinfo.hStdError = consoleErrWrite; sinfo.hStdOutput = consoleOutWrite; } const nowide::wstackstring wblenderBin(blenderBin.value()); nowide::wstackstring wcmdLine(cmdLine); if (!CreateProcessW(wblenderBin.get(), wcmdLine.get(), nullptr, nullptr, TRUE, NORMAL_PRIORITY_CLASS, nullptr, nullptr, &sinfo, &m_pinfo)) { LPWSTR messageBuffer = nullptr; FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, nullptr, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPWSTR)&messageBuffer, 0, nullptr); BlenderLog.report(logvisor::Fatal, FMT_STRING("unable to launch blender from {}: {}"), blenderBin.value(), nowide::narrow(messageBuffer)); } close(m_writepipe[0]); close(m_readpipe[1]); CloseHandle(nulHandle); CloseHandle(consoleErrWrite); CloseHandle(consoleOutWrite); m_consoleThreadRunning = true; m_consoleThread = std::thread([=]() { CHAR lpBuffer[1024]; DWORD nBytesRead; DWORD nCharsWritten; while (m_consoleThreadRunning) { if (!ReadFile(consoleOutRead, lpBuffer, sizeof(lpBuffer), &nBytesRead, nullptr) || !nBytesRead) { DWORD err = GetLastError(); if (err == ERROR_BROKEN_PIPE) break; // pipe done - normal exit path. else BlenderLog.report(logvisor::Error, FMT_STRING("Error with ReadFile: {:08X}"), err); // Something bad happened. } // Display the character read on the screen. auto lk = logvisor::LockLog(); if (!WriteConsoleA(GetStdHandle(STD_OUTPUT_HANDLE), lpBuffer, nBytesRead, &nCharsWritten, nullptr)) { // BlenderLog.report(logvisor::Error, FMT_STRING("Error with WriteConsole: %08X"), GetLastError()); } } CloseHandle(consoleOutRead); }); #else pid_t pid = fork(); if (!pid) { /* Close all file descriptors besides those this blender instance uses */ int upper_fd = std::max(m_writepipe[0], m_readpipe[1]); for (int i = 3; i < upper_fd; ++i) { if (i != m_writepipe[0] && i != m_readpipe[1]) close(i); } closefrom(upper_fd + 1); if (verbosityLevel == 0) { int devNull = open("/dev/null", O_WRONLY); dup2(devNull, STDOUT_FILENO); dup2(devNull, STDERR_FILENO); close(devNull); } std::string errbuf; std::string readfds = fmt::format(FMT_STRING("{}"), m_writepipe[0]); std::string writefds = fmt::format(FMT_STRING("{}"), m_readpipe[1]); std::string vLevel = fmt::format(FMT_STRING("{}"), verbosityLevel); if (blenderBin) { execlp(blenderBin->c_str(), blenderBin->c_str(), "--background", "-P", blenderShellPath.c_str(), "--", readfds.c_str(), writefds.c_str(), vLevel.c_str(), blenderAddonPath.c_str(), nullptr); if (errno != ENOENT) { errbuf = fmt::format(FMT_STRING("NOLAUNCH {}"), strerror(errno)); _writeStr(errbuf.c_str(), errbuf.size(), m_readpipe[1]); exit(1); } } /* Unable to find blender */ _writeStr("NOBLENDER", 9, m_readpipe[1]); exit(1); } close(m_writepipe[0]); close(m_readpipe[1]); m_blenderProc = pid; #endif /* Stash error path and unlink existing file */ #if _WIN32 m_errPath = std::string(TMPDIR) + fmt::format(FMT_STRING("/hecl_{:016X}.derp"), (unsigned long long)m_pinfo.dwProcessId); #else m_errPath = std::string(TMPDIR) + fmt::format(FMT_STRING("/hecl_{:016X}.derp"), (unsigned long long)m_blenderProc); #endif hecl::Unlink(m_errPath.c_str()); /* Handle first response */ std::string lineStr = _readStdString(); if (!lineStr.compare(0, 8, "NOLAUNCH")) { _closePipe(); BlenderLog.report(logvisor::Fatal, FMT_STRING("Unable to launch blender: {}"), lineStr.c_str() + 9); } else if (!lineStr.compare(0, 9, "NOBLENDER")) { _closePipe(); BlenderLog.report(logvisor::Fatal, FMT_STRING("Unable to find blender")); } else if (lineStr == "INVALIDBLENDERVER") { _closePipe(); auto [major, minor] = hecl::blender::GetEarliestSupportedVersion(); BlenderLog.report(logvisor::Fatal, FMT_STRING("Installed blender version must be >= {}.{}"), major, minor); } else if (lineStr == "NOADDON") { _closePipe(); if (blenderAddonPath != "SKIPINSTALL") InstallAddon(blenderAddonPath.c_str()); ++installAttempt; if (installAttempt >= 2) BlenderLog.report(logvisor::Fatal, FMT_STRING("unable to install blender addon using '{}'"), blenderAddonPath.c_str()); #ifndef _WIN32 waitpid(pid, nullptr, 0); #endif continue; } else if (lineStr == "ADDONINSTALLED") { _closePipe(); blenderAddonPath = "SKIPINSTALL"; #ifndef _WIN32 waitpid(pid, nullptr, 0); #endif continue; } else if (lineStr != "READY") { _closePipe(); BlenderLog.report(logvisor::Fatal, FMT_STRING("read '{}' from blender; expected 'READY'"), lineStr); } _writeStr("ACK"); break; } #else BlenderLog.report(logvisor::Fatal, FMT_STRING("BlenderConnection not available on UWP")); #endif } Connection::~Connection() { _closePipe(); } void Vector2f::read(Connection& conn) { conn._readBuf(&val, 8); } void Vector3f::read(Connection& conn) { conn._readBuf(&val, 12); } void Vector4f::read(Connection& conn) { conn._readBuf(&val, 16); } void Matrix4f::read(Connection& conn) { conn._readBuf(&val, 64); } void Index::read(Connection& conn) { conn._readBuf(&val, 4); } void Float::read(Connection& conn) { conn._readBuf(&val, 4); } void Boolean::read(Connection& conn) { conn._readBuf(&val, 1); } bool PyOutStream::StreamBuf::sendLine(std::string_view line) { m_parent.m_parent->_writeStr(line); if (!m_parent.m_parent->_isOk()) { if (m_deleteOnError) m_parent.m_parent->deleteBlend(); m_parent.m_parent->_blenderDied(); return false; } return true; } PyOutStream::StreamBuf::int_type PyOutStream::StreamBuf::overflow(int_type ch) { if (!m_parent.m_parent || !m_parent.m_parent->m_lock) BlenderLog.report(logvisor::Fatal, FMT_STRING("lock not held for PyOutStream writing")); if (ch != traits_type::eof() && ch != '\n' && ch != '\0') { m_lineBuf += char_type(ch); return ch; } sendLine(m_lineBuf); m_lineBuf.clear(); return ch; } std::streamsize PyOutStream::StreamBuf::xsputn(const char_type* __first, std::streamsize __n) { if (!m_parent.m_parent || !m_parent.m_parent->m_lock) BlenderLog.report(logvisor::Fatal, FMT_STRING("lock not held for PyOutStream writing")); const char_type* __last = __first + __n; const char_type* __s = __first; for (const char_type* __e = __first; __e != __last; ++__e) { if (*__e == '\n' || traits_type::to_int_type(*__e) == traits_type::eof()) { std::string_view line(__s, __e - __s); bool result; if (!m_lineBuf.empty()) { /* Complete line with incomplete line from previous call */ m_lineBuf += line; result = sendLine(m_lineBuf); m_lineBuf.clear(); } else { /* Complete line (optimal case) */ result = sendLine(line); } if (!result || traits_type::to_int_type(*__e) == traits_type::eof()) return __e - __first; /* Error or eof, end now */ __s += line.size() + 1; } } if (__s != __last) /* String ended with incomplete line (ideally this shouldn't happen for zero buffer overhead) */ m_lineBuf += std::string_view(__s, __last - __s); return __n; } constexpr std::array BlendTypeStrs{"NONE"sv, "MESH"sv, "CMESH"sv, "ARMATURE"sv, "ACTOR"sv, "AREA"sv, "WORLD"sv, "MAPAREA"sv, "MAPUNIVERSE"sv, "FRAME"sv, "PATH"sv}; bool Connection::createBlend(const ProjectPath& path, BlendType type) { if (m_lock) { BlenderLog.report(logvisor::Fatal, FMT_STRING("BlenderConnection::createBlend() musn't be called with stream active")); return false; } _writeStr(fmt::format(FMT_STRING("CREATE \"{}\" {}"), path.getAbsolutePath(), BlendTypeStrs[int(type)])); if (_isFinished()) { /* Delete immediately in case save doesn't occur */ hecl::Unlink(path.getAbsolutePath().data()); m_loadedBlend = path; m_loadedType = type; return true; } return false; } bool Connection::openBlend(const ProjectPath& path, bool force) { if (m_lock) { BlenderLog.report(logvisor::Fatal, FMT_STRING("BlenderConnection::openBlend() musn't be called with stream active")); return false; } if (!force && path == m_loadedBlend) return true; _writeStr(fmt::format(FMT_STRING("OPEN \"{}\""), path.getAbsolutePath())); if (_isFinished()) { m_loadedBlend = path; _writeStr("GETTYPE"); std::string typeStr = _readStdString(); m_loadedType = BlendType::None; unsigned idx = 0; for (const auto& type : BlendTypeStrs) { if (type == typeStr) { m_loadedType = BlendType(idx); break; } ++idx; } m_loadedRigged = false; if (m_loadedType == BlendType::Mesh) { _writeStr("GETMESHRIGGED"); if (_isTrue()) m_loadedRigged = true; } return true; } return false; } bool Connection::saveBlend() { if (m_lock) { BlenderLog.report(logvisor::Fatal, FMT_STRING("BlenderConnection::saveBlend() musn't be called with stream active")); return false; } _writeStr("SAVE"); return _isFinished(); } void Connection::deleteBlend() { if (m_loadedBlend) { hecl::Unlink(m_loadedBlend.getAbsolutePath().data()); BlenderLog.report(logvisor::Info, FMT_STRING("Deleted '{}'"), m_loadedBlend.getAbsolutePath()); m_loadedBlend = ProjectPath(); } } PyOutStream::PyOutStream(Connection* parent, bool deleteOnError) : std::ostream(&m_sbuf), m_parent(parent), m_sbuf(*this, deleteOnError) { m_parent->m_pyStreamActive = true; m_parent->_writeStr("PYBEGIN"); m_parent->_checkReady("unable to open PyOutStream with blender"sv); } void PyOutStream::close() { if (m_parent && m_parent->m_lock) { m_parent->_writeStr("PYEND"); m_parent->_checkDone("unable to close PyOutStream with blender"sv); m_parent->m_pyStreamActive = false; m_parent->m_lock = false; } } void PyOutStream::linkBlend(std::string_view target, std::string_view objName, bool link) { format( FMT_STRING("if '{}' not in bpy.data.scenes:\n" " with bpy.data.libraries.load('''{}''', link={}, relative=True) as (data_from, data_to):\n" " data_to.scenes = data_from.scenes\n" " obj_scene = None\n" " for scene in data_to.scenes:\n" " if scene.name == '{}':\n" " obj_scene = scene\n" " break\n" " if not obj_scene:\n" " raise RuntimeError('''unable to find {} in {}. try deleting it and restart the extract.''')\n" " obj = None\n" " for object in obj_scene.objects:\n" " if object.name == obj_scene.name:\n" " obj = object\n" "else:\n" " obj = bpy.data.objects['{}']\n" "\n"), objName, target, link ? "True" : "False", objName, objName, target, objName); } void PyOutStream::linkArmature(std::string_view target, std::string_view armName) { format(FMT_STRING( "target_arm_name = '{}'\n" "if target_arm_name not in bpy.data.armatures:\n" " with bpy.data.libraries.load('''{}''', link=True, relative=True) as (data_from, data_to):\n" " if target_arm_name not in data_from.armatures:\n" " raise RuntimeError('''unable to find {} in {}. try deleting it and restart the extract.''')\n" " data_to.armatures.append(target_arm_name)\n" " obj = bpy.data.objects.new(target_arm_name, bpy.data.armatures[target_arm_name])\n" "else:\n" " obj = bpy.data.objects[target_arm_name]\n" "\n"), armName, target, armName, target); } void PyOutStream::linkMesh(std::string_view target, std::string_view meshName) { format(FMT_STRING( "target_mesh_name = '{}'\n" "if target_mesh_name not in bpy.data.objects:\n" " with bpy.data.libraries.load('''{}''', link=True, relative=True) as (data_from, data_to):\n" " if target_mesh_name not in data_from.objects:\n" " raise RuntimeError('''unable to find {} in {}. try deleting it and restart the extract.''')\n" " data_to.objects.append(target_mesh_name)\n" "obj = bpy.data.objects[target_mesh_name]\n" "\n"), meshName, target, meshName, target); } void PyOutStream::linkBackground(std::string_view target, std::string_view sceneName) { if (sceneName.empty()) { format(FMT_STRING("with bpy.data.libraries.load('''{}''', link=True, relative=True) as (data_from, data_to):\n" " data_to.scenes = data_from.scenes\n" "obj_scene = None\n" "for scene in data_to.scenes:\n" " obj_scene = scene\n" " break\n" "if not obj_scene:\n" " raise RuntimeError('''unable to find {}. try deleting it and restart the extract.''')\n" "\n" "bpy.context.scene.background_set = obj_scene\n"), target, target); } else { format(FMT_STRING( "if '{}' not in bpy.data.scenes:\n" " with bpy.data.libraries.load('''{}''', link=True, relative=True) as (data_from, data_to):\n" " data_to.scenes = data_from.scenes\n" " obj_scene = None\n" " for scene in data_to.scenes:\n" " if scene.name == '{}':\n" " obj_scene = scene\n" " break\n" " if not obj_scene:\n" " raise RuntimeError('''unable to find {} in {}. try deleting it and restart the extract.''')\n" "\n" "bpy.context.scene.background_set = bpy.data.scenes['{}']\n"), sceneName, target, sceneName, sceneName, target, sceneName); } } void PyOutStream::AABBToBMesh(const atVec3f& min, const atVec3f& max) { athena::simd_floats minf(min.simd); athena::simd_floats maxf(max.simd); format(FMT_STRING("bm = bmesh.new()\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.new(({},{},{}))\n" "bm.verts.ensure_lookup_table()\n" "bm.edges.new((bm.verts[0], bm.verts[1]))\n" "bm.edges.new((bm.verts[0], bm.verts[2]))\n" "bm.edges.new((bm.verts[0], bm.verts[4]))\n" "bm.edges.new((bm.verts[3], bm.verts[1]))\n" "bm.edges.new((bm.verts[3], bm.verts[2]))\n" "bm.edges.new((bm.verts[3], bm.verts[7]))\n" "bm.edges.new((bm.verts[5], bm.verts[1]))\n" "bm.edges.new((bm.verts[5], bm.verts[4]))\n" "bm.edges.new((bm.verts[5], bm.verts[7]))\n" "bm.edges.new((bm.verts[6], bm.verts[2]))\n" "bm.edges.new((bm.verts[6], bm.verts[4]))\n" "bm.edges.new((bm.verts[6], bm.verts[7]))\n"), minf[0], minf[1], minf[2], maxf[0], minf[1], minf[2], minf[0], maxf[1], minf[2], maxf[0], maxf[1], minf[2], minf[0], minf[1], maxf[2], maxf[0], minf[1], maxf[2], minf[0], maxf[1], maxf[2], maxf[0], maxf[1], maxf[2]); } void PyOutStream::centerView() { *this << "for obj in bpy.context.scene.objects:\n" " if obj.type == 'CAMERA' or obj.type == 'LIGHT':\n" " obj.hide_set(True)\n" "\n" "old_smooth_view = bpy.context.preferences.view.smooth_view\n" "bpy.context.preferences.view.smooth_view = 0\n" "for window in bpy.context.window_manager.windows:\n" " screen = window.screen\n" " for area in screen.areas:\n" " if area.type == 'VIEW_3D':\n" " for region in area.regions:\n" " if region.type == 'WINDOW':\n" " override = {'scene': bpy.context.scene, 'window': window, 'screen': screen, 'area': " "area, 'region': region}\n" " bpy.ops.view3d.view_all(override)\n" " break\n" "bpy.context.preferences.view.smooth_view = old_smooth_view\n" "\n" "for obj in bpy.context.scene.objects:\n" " if obj.type == 'CAMERA' or obj.type == 'LIGHT':\n" " obj.hide_set(True)\n"; } ANIMOutStream::ANIMOutStream(Connection* parent) : m_parent(parent) { m_parent->_writeStr("PYANIM"); m_parent->_checkAnimReady("unable to open ANIMOutStream"sv); } ANIMOutStream::~ANIMOutStream() { char tp = -1; m_parent->_writeBuf(&tp, 1); m_parent->_checkAnimDone("unable to close ANIMOutStream"sv); } void ANIMOutStream::changeCurve(CurveType type, unsigned crvIdx, unsigned keyCount) { if (m_curCount != m_totalCount) BlenderLog.report(logvisor::Fatal, FMT_STRING("incomplete ANIMOutStream for change")); m_curCount = 0; m_totalCount = keyCount; char tp = char(type); m_parent->_writeBuf(&tp, 1); struct { uint32_t ci; uint32_t kc; } info = {uint32_t(crvIdx), uint32_t(keyCount)}; m_parent->_writeBuf(reinterpret_cast(&info), 8); m_inCurve = true; } void ANIMOutStream::write(unsigned frame, float val) { if (!m_inCurve) BlenderLog.report(logvisor::Fatal, FMT_STRING("changeCurve not called before write")); if (m_curCount < m_totalCount) { struct { uint32_t frm; float val; } key = {uint32_t(frame), val}; m_parent->_writeBuf(reinterpret_cast(&key), 8); ++m_curCount; } else BlenderLog.report(logvisor::Fatal, FMT_STRING("ANIMOutStream keyCount overflow")); } Mesh::SkinBind::SkinBind(Connection& conn) { conn._readValue(vg_idx); conn._readValue(weight); } void Mesh::normalizeSkinBinds() { for (auto& skin : skins) { float accum = 0.f; for (const SkinBind& bind : skin) if (bind.valid()) accum += bind.weight; if (accum > FLT_EPSILON) { for (SkinBind& bind : skin) if (bind.valid()) bind.weight /= accum; } } } Mesh::Mesh(Connection& conn, HMDLTopology topologyIn, int skinSlotCount, bool useLuvs) : topology(topologyIn), sceneXf(conn), aabbMin(conn), aabbMax(conn) { conn._readVectorFunc(materialSets, [&]() { conn._readVector(materialSets.emplace_back()); }); MeshOptimizer opt(conn, materialSets[0], useLuvs); opt.optimize(*this, skinSlotCount); conn._readVector(boneNames); if (boneNames.size()) for (Surface& s : surfaces) s.skinBankIdx = skinBanks.addSurface(*this, s, skinSlotCount); /* Custom properties */ uint32_t propCount; conn._readValue(propCount); std::string keyBuf; std::string valBuf; for (uint32_t i = 0; i < propCount; ++i) { keyBuf = conn._readStdString(); valBuf = conn._readStdString(); customProps[keyBuf] = valBuf; } /* Connect skinned verts to bank slots */ if (boneNames.size()) { for (Surface& surf : surfaces) { SkinBanks::Bank& bank = skinBanks.banks[surf.skinBankIdx]; for (Surface::Vert& vert : surf.verts) { if (vert.iPos == 0xffffffff) continue; for (uint32_t i = 0; i < bank.m_skinIdxs.size(); ++i) { if (bank.m_skinIdxs[i] == vert.iSkin) { vert.iBankSkin = i; break; } } } } } } Mesh Mesh::getContiguousSkinningVersion() const { Mesh newMesh = *this; newMesh.pos.clear(); newMesh.norm.clear(); newMesh.contiguousSkinVertCounts.clear(); newMesh.contiguousSkinVertCounts.reserve(skins.size()); for (std::size_t i = 0; i < skins.size(); ++i) { std::unordered_map, uint32_t> contigMap; std::size_t vertCount = 0; for (Surface& surf : newMesh.surfaces) { for (Surface::Vert& vert : surf.verts) { if (vert.iPos == 0xffffffff) continue; if (vert.iSkin == i) { auto key = std::make_pair(vert.iPos, vert.iNorm); auto search = contigMap.find(key); if (search != contigMap.end()) { vert.iPos = search->second; vert.iNorm = search->second; } else { uint32_t newIdx = newMesh.pos.size(); contigMap[key] = newIdx; newMesh.pos.push_back(pos.at(vert.iPos)); newMesh.norm.push_back(norm.at(vert.iNorm)); vert.iPos = newIdx; vert.iNorm = newIdx; ++vertCount; } } } } newMesh.contiguousSkinVertCounts.push_back(vertCount); } return newMesh; } template static T SwapFourCC(T fcc) { return T(hecl::SBig(std::underlying_type_t(fcc))); } Material::PASS::PASS(Connection& conn) { conn._readValue(type); type = SwapFourCC(type); tex = conn._readPath(); conn._readValue(source); conn._readValue(uvAnimType); uint32_t argCount; conn._readValue(argCount); for (uint32_t i = 0; i < argCount; ++i) conn._readValue(uvAnimParms[i]); conn._readValue(alpha); } Material::CLR::CLR(Connection& conn) { conn._readValue(type); type = SwapFourCC(type); color.read(conn); } Material::Material(Connection& conn) { name = conn._readStdString(); conn._readValue(passIndex); conn._readValue(shaderType); shaderType = SwapFourCC(shaderType); conn._readVectorFunc(chunks, [&]() { ChunkType type; conn._readValue(type); type = SwapFourCC(type); chunks.push_back(Chunk::Build(type, conn)); }); uint32_t iPropCount; conn._readValue(iPropCount); iprops.reserve(iPropCount); for (uint32_t i = 0; i < iPropCount; ++i) { std::string readStr = conn._readStdString(); conn._readValue(iprops[readStr]); } conn._readValue(blendMode); } bool Mesh::Surface::Vert::operator==(const Vert& other) const { return std::tie(iPos, iNorm, iColor, iUv, iSkin) == std::tie(other.iPos, other.iNorm, other.iColor, other.iUv, other.iSkin); } static bool VertInBank(const std::vector& bank, uint32_t sIdx) { return std::any_of(bank.cbegin(), bank.cend(), [sIdx](auto index) { return index == sIdx; }); } void Mesh::SkinBanks::Bank::addSkins(const Mesh& parent, const std::vector& skinIdxs) { for (uint32_t sidx : skinIdxs) { m_skinIdxs.push_back(sidx); for (const SkinBind& bind : parent.skins[sidx]) { if (!bind.valid()) break; bool found = false; for (uint32_t bidx : m_boneIdxs) { if (bidx == bind.vg_idx) { found = true; break; } } if (!found) m_boneIdxs.push_back(bind.vg_idx); } } } std::vector::iterator Mesh::SkinBanks::addSkinBank(int skinSlotCount) { banks.emplace_back(); if (skinSlotCount > 0) banks.back().m_skinIdxs.reserve(skinSlotCount); return banks.end() - 1; } uint32_t Mesh::SkinBanks::addSurface(const Mesh& mesh, const Surface& surf, int skinSlotCount) { if (banks.empty()) addSkinBank(skinSlotCount); std::vector toAdd; if (skinSlotCount > 0) toAdd.reserve(skinSlotCount); std::vector::iterator bankIt = banks.begin(); for (;;) { bool done = true; for (; bankIt != banks.end(); ++bankIt) { Bank& bank = *bankIt; done = true; for (const Surface::Vert& v : surf.verts) { if (v.iPos == 0xffffffff) continue; if (!VertInBank(bank.m_skinIdxs, v.iSkin) && !VertInBank(toAdd, v.iSkin)) { toAdd.push_back(v.iSkin); if (skinSlotCount > 0 && bank.m_skinIdxs.size() + toAdd.size() > std::size_t(skinSlotCount)) { toAdd.clear(); done = false; break; } } } if (toAdd.size()) { bank.addSkins(mesh, toAdd); toAdd.clear(); } if (done) return uint32_t(bankIt - banks.begin()); } if (!done) { bankIt = addSkinBank(skinSlotCount); continue; } break; } return uint32_t(-1); } ColMesh::ColMesh(Connection& conn) { conn._readVector(materials); conn._readVector(verts); conn._readVector(edges); conn._readVector(trianges); } ColMesh::Material::Material(Connection& conn) { name = conn._readStdString(); conn._readBuf(&unknown, 42); } ColMesh::Edge::Edge(Connection& conn) { conn._readBuf(this, 9); } ColMesh::Triangle::Triangle(Connection& conn) { conn._readBuf(this, 17); } World::Area::Dock::Dock(Connection& conn) { verts[0].read(conn); verts[1].read(conn); verts[2].read(conn); verts[3].read(conn); targetArea.read(conn); targetDock.read(conn); } World::Area::Area(Connection& conn) { std::string name = conn._readStdString(); path.assign(conn.getBlendPath().getParentPath(), name); aabb[0].read(conn); aabb[1].read(conn); transform.read(conn); conn._readVector(docks); } World::World(Connection& conn) { conn._readVector(areas); } Light::Light(Connection& conn) : sceneXf(conn), color(conn) { conn._readBuf(&layer, 29); name = conn._readStdString(); } MapArea::Surface::Surface(Connection& conn) { centerOfMass.read(conn); normal.read(conn); conn._readBuf(&start, 8); conn._readVectorFunc(borders, [&]() { conn._readBuf(&borders.emplace_back(), 8); }); } MapArea::POI::POI(Connection& conn) { conn._readBuf(&type, 12); xf.read(conn); } MapArea::MapArea(Connection& conn) { conn._readValue(visType); conn._readVector(verts); uint8_t isIdx; conn._readValue(isIdx); while (isIdx) { conn._readValue(indices.emplace_back()); conn._readValue(isIdx); } conn._readVector(surfaces); conn._readVector(pois); } MapUniverse::World::World(Connection& conn) { name = conn._readStdString(); xf.read(conn); conn._readVector(hexagons); color.read(conn); std::string path = conn._readStdString(); if (!path.empty()) { worldPath.assign(conn.getBlendPath().getProject().getProjectWorkingPath(), path); } } MapUniverse::MapUniverse(Connection& conn) { hexagonPath = conn._readPath(); conn._readVector(worlds); } Actor::Actor(Connection& conn) { conn._readVector(armatures); conn._readVector(subtypes); conn._readVector(attachments); conn._readVector(actions); } PathMesh::PathMesh(Connection& conn) { conn._readVector(data); } const Bone* Armature::lookupBone(const char* name) const { for (const Bone& b : bones) if (b.name == name) return &b; return nullptr; } const Bone* Armature::getParent(const Bone* bone) const { if (bone->parent < 0) return nullptr; return &bones[bone->parent]; } const Bone* Armature::getChild(const Bone* bone, std::size_t child) const { if (child >= bone->children.size()) return nullptr; int32_t cIdx = bone->children[child]; if (cIdx < 0) return nullptr; return &bones[cIdx]; } const Bone* Armature::getRoot() const { for (const Bone& b : bones) if (b.parent < 0) return &b; return nullptr; } Armature::Armature(Connection& conn) { conn._readVector(bones); } Bone::Bone(Connection& conn) { name = conn._readStdString(); origin.read(conn); conn._readValue(parent); conn._readVector(children); } Actor::ActorArmature::ActorArmature(Connection& conn) { name = conn._readStdString(); path = conn._readPath(); armature.emplace(conn); } Actor::Subtype::OverlayMesh::OverlayMesh(Connection& conn) { name = conn._readStdString(); cskrId = conn._readStdString(); mesh = conn._readPath(); } Actor::Subtype::Subtype(Connection& conn) { name = conn._readStdString(); cskrId = conn._readStdString(); mesh = conn._readPath(); conn._readValue(armature); conn._readVector(overlayMeshes); } Actor::Attachment::Attachment(Connection& conn) { name = conn._readStdString(); cskrId = conn._readStdString(); mesh = conn._readPath(); conn._readValue(armature); } Action::Action(Connection& conn) { name = conn._readStdString(); animId = conn._readStdString(); conn._readValue(interval); conn._readValue(additive); conn._readValue(looping); conn._readVector(frames); conn._readVector(channels); conn._readVectorFunc(subtypeAABBs, [&]() { auto& p = subtypeAABBs.emplace_back(); p.first.read(conn); p.second.read(conn); }); } Action::Channel::Channel(Connection& conn) { boneName = conn._readStdString(); conn._readValue(attrMask); conn._readVector(keys, attrMask); } Action::Channel::Key::Key(Connection& conn, uint32_t attrMask) { if (attrMask & 1) rotation.read(conn); if (attrMask & 2) position.read(conn); if (attrMask & 4) scale.read(conn); } DataStream::DataStream(Connection* parent) : m_parent(parent) { m_parent->m_dataStreamActive = true; m_parent->_writeStr("DATABEGIN"); m_parent->_checkReady("unable to open DataStream with blender"sv); } void DataStream::close() { if (m_parent && m_parent->m_lock) { m_parent->_writeStr("DATAEND"); m_parent->_checkDone("unable to close DataStream with blender"sv); m_parent->m_dataStreamActive = false; m_parent->m_lock = false; } } std::vector DataStream::getMeshList() { m_parent->_writeStr("MESHLIST"); std::vector retval; m_parent->_readVector(retval); return retval; } std::vector DataStream::getLightList() { m_parent->_writeStr("LIGHTLIST"); std::vector retval; m_parent->_readVector(retval); return retval; } std::pair DataStream::getMeshAABB() { if (m_parent->m_loadedType != BlendType::Mesh && m_parent->m_loadedType != BlendType::Actor) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not a MESH or ACTOR blend"), m_parent->m_loadedBlend.getAbsolutePath()); m_parent->_writeStr("MESHAABB"); m_parent->_checkOk("unable get AABB"sv); Vector3f minPt(*m_parent); Vector3f maxPt(*m_parent); return std::make_pair(minPt.val, maxPt.val); } const char* DataStream::MeshOutputModeString(HMDLTopology topology) { static constexpr std::array STRS{"TRIANGLES", "TRISTRIPS"}; return STRS[int(topology)]; } Mesh DataStream::compileMesh(HMDLTopology topology, int skinSlotCount) { if (m_parent->getBlendType() != BlendType::Mesh) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not a MESH blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("MESHCOMPILE"); m_parent->_checkOk("unable to cook mesh"sv); return Mesh(*m_parent, topology, skinSlotCount); } Mesh DataStream::compileMesh(std::string_view name, HMDLTopology topology, int skinSlotCount, bool useLuv) { if (m_parent->getBlendType() != BlendType::Area) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an AREA blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(FMT_STRING("MESHCOMPILENAME {} {}"), name, int(useLuv))); m_parent->_checkOk("unable to cook mesh"sv); return Mesh(*m_parent, topology, skinSlotCount, useLuv); } ColMesh DataStream::compileColMesh(std::string_view name) { if (m_parent->getBlendType() != BlendType::Area) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an AREA blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(FMT_STRING("MESHCOMPILENAMECOLLISION {}"), name)); m_parent->_checkOk("unable to cook collision mesh"sv); return ColMesh(*m_parent); } std::vector DataStream::compileColMeshes() { if (m_parent->getBlendType() != BlendType::ColMesh) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not a CMESH blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("MESHCOMPILECOLLISIONALL"); m_parent->_checkOk("unable to cook collision meshes"sv); std::vector ret; m_parent->_readVector(ret); return ret; } std::vector DataStream::compileLights() { if (m_parent->getBlendType() != BlendType::Area) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an AREA blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("LIGHTCOMPILEALL"); m_parent->_checkOk("unable to gather all lights"sv); std::vector ret; m_parent->_readVector(ret); return ret; } PathMesh DataStream::compilePathMesh() { if (m_parent->getBlendType() != BlendType::PathMesh) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not a PATH blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("MESHCOMPILEPATH"); m_parent->_checkOk("unable to compile path mesh"sv); return PathMesh(*m_parent); } std::vector DataStream::compileGuiFrame(int version) { if (m_parent->getBlendType() != BlendType::Frame) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not a FRAME blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(FMT_STRING("FRAMECOMPILE {}"), version)); m_parent->_checkOk("unable to compile frame"sv); while (true) { std::string readStr = m_parent->_readStdString(); if (readStr == "FRAMEDONE") break; auto& proj = m_parent->getBlendPath().getProject(); std::string relative; if (PathRelative(readStr.c_str())) relative = readStr; else relative = proj.getProjectRootPath().getProjectRelativeFromAbsolute(readStr); hecl::ProjectPath path(proj.getProjectWorkingPath(), relative); m_parent->_writeStr(fmt::format(FMT_STRING("{:08X}"), path.parsedHash32())); } std::vector ret; m_parent->_readVector(ret); return ret; } std::vector DataStream::getTextures() { m_parent->_writeStr("GETTEXTURES"); m_parent->_checkOk("unable to get textures"sv); std::vector texs; m_parent->_readVectorFunc(texs, [&]() { texs.push_back(m_parent->_readPath()); }); return texs; } Actor DataStream::compileActor() { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an ACTOR blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("ACTORCOMPILE"); m_parent->_checkOk("unable to compile actor"sv); return Actor(*m_parent); } Actor DataStream::compileActorCharacterOnly() { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an ACTOR blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("ACTORCOMPILECHARACTERONLY"); m_parent->_checkOk("unable to compile actor"sv); return Actor(*m_parent); } Armature DataStream::compileArmature() { if (m_parent->getBlendType() != BlendType::Armature) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an ARMATURE blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("ARMATURECOMPILE"); m_parent->_checkOk("unable to compile armature"sv); return Armature(*m_parent); } Action DataStream::compileActionChannelsOnly(std::string_view name) { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an ACTOR blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(FMT_STRING("ACTIONCOMPILECHANNELSONLY {}"), name)); m_parent->_checkOk("unable to compile action"sv); return Action(*m_parent); } World DataStream::compileWorld() { if (m_parent->getBlendType() != BlendType::World) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an WORLD blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("WORLDCOMPILE"); m_parent->_checkOk("unable to compile world"sv); return World(*m_parent); } std::vector> DataStream::getSubtypeNames() { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an ACTOR blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("GETSUBTYPENAMES"); m_parent->_checkOk("unable to get subtypes of actor"sv); std::vector> ret; m_parent->_readVectorFunc(ret, [&]() { auto& [name, cskrId] = ret.emplace_back(); name = m_parent->_readStdString(); cskrId = m_parent->_readStdString(); }); return ret; } std::vector> DataStream::getActionNames() { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an ACTOR blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("GETACTIONNAMES"); m_parent->_checkOk("unable to get actions of actor"sv); std::vector> ret; m_parent->_readVectorFunc(ret, [&]() { auto& [name, animId] = ret.emplace_back(); name = m_parent->_readStdString(); animId = m_parent->_readStdString(); }); return ret; } std::vector> DataStream::getSubtypeOverlayNames(std::string_view name) { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an ACTOR blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(FMT_STRING("GETSUBTYPEOVERLAYNAMES {}"), name)); m_parent->_checkOk("unable to get subtype overlays of actor"sv); std::vector> ret; m_parent->_readVectorFunc(ret, [&]() { auto& [subtypeName, cskrId] = ret.emplace_back(); subtypeName = m_parent->_readStdString(); cskrId = m_parent->_readStdString(); }); return ret; } std::vector> DataStream::getAttachmentNames() { if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an ACTOR blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("GETATTACHMENTNAMES"); m_parent->_checkOk("unable to get attachments of actor"sv); std::vector> ret; m_parent->_readVectorFunc(ret, [&]() { auto& [name, cskrId] = ret.emplace_back(); name = m_parent->_readStdString(); cskrId = m_parent->_readStdString(); }); return ret; } std::unordered_map DataStream::getBoneMatrices(std::string_view name) { if (name.empty()) return {}; if (m_parent->getBlendType() != BlendType::Actor) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an ACTOR blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(FMT_STRING("GETBONEMATRICES {}"), name)); m_parent->_checkOk("unable to get matrices of armature"sv); std::unordered_map ret; uint32_t boneCount; m_parent->_readValue(boneCount); ret.reserve(boneCount); for (uint32_t i = 0; i < boneCount; ++i) { std::string mat_name = m_parent->_readStdString(); Matrix3f matOut; for (int mat_i = 0; mat_i < 3; ++mat_i) { for (int mat_j = 0; mat_j < 3; ++mat_j) { float val; m_parent->_readValue(val); matOut[mat_i].simd[mat_j] = val; } matOut[mat_i].simd[3] = 0.f; } ret.emplace(std::move(mat_name), std::move(matOut)); } return ret; } bool DataStream::renderPvs(std::string_view path, const atVec3f& location) { if (path.empty()) return false; if (m_parent->getBlendType() != BlendType::Area) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an AREA blend"), m_parent->getBlendPath().getAbsolutePath()); athena::simd_floats f(location.simd); m_parent->_writeStr(fmt::format(FMT_STRING("RENDERPVS {} {} {} {}"), path, f[0], f[1], f[2])); m_parent->_checkOk("unable to render PVS"sv); return true; } bool DataStream::renderPvsLight(std::string_view path, std::string_view lightName) { if (path.empty()) return false; if (m_parent->getBlendType() != BlendType::Area) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not an AREA blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr(fmt::format(FMT_STRING("RENDERPVSLIGHT {} {}"), path, lightName)); m_parent->_checkOk("unable to render PVS light"sv); return true; } MapArea DataStream::compileMapArea() { if (m_parent->getBlendType() != BlendType::MapArea) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not a MAPAREA blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("MAPAREACOMPILE"); m_parent->_checkOk("unable to compile map area"sv); return {*m_parent}; } MapUniverse DataStream::compileMapUniverse() { if (m_parent->getBlendType() != BlendType::MapUniverse) BlenderLog.report(logvisor::Fatal, FMT_STRING("{} is not a MAPUNIVERSE blend"), m_parent->getBlendPath().getAbsolutePath()); m_parent->_writeStr("MAPUNIVERSECOMPILE"); m_parent->_checkOk("unable to compile map universe"sv); return {*m_parent}; } void Connection::quitBlender() { if (m_blenderQuit) return; m_blenderQuit = true; char lineBuf[256]; if (m_lock) { if (m_pyStreamActive) { _writeStr("PYEND"); _readStr(lineBuf, sizeof(lineBuf)); m_pyStreamActive = false; } else if (m_dataStreamActive) { _writeStr("DATAEND"); _readStr(lineBuf, sizeof(lineBuf)); m_dataStreamActive = false; } m_lock = false; } _writeStr("QUIT"); _readStr(lineBuf, sizeof(lineBuf)); #ifndef _WIN32 waitpid(m_blenderProc, nullptr, 0); #endif } Connection& Connection::SharedConnection() { return SharedBlenderToken.getBlenderConnection(); } void Connection::Shutdown() { SharedBlenderToken.shutdown(); } Connection& Token::getBlenderConnection() { if (!m_conn) m_conn = std::make_unique(hecl::VerbosityLevel); return *m_conn; } void Token::shutdown() { if (m_conn) { m_conn->quitBlender(); m_conn.reset(); if (hecl::VerbosityLevel >= 1) BlenderLog.report(logvisor::Info, FMT_STRING("Blender Shutdown Successful")); } } Token::~Token() { shutdown(); } HMDLBuffers::HMDLBuffers(HMDLMeta&& meta, std::size_t vboSz, const std::vector& iboData, std::vector&& surfaces, const Mesh::SkinBanks& skinBanks) : m_meta(std::move(meta)) , m_vboSz(vboSz) , m_vboData(new uint8_t[vboSz]) , m_iboSz(iboData.size() * 4) , m_iboData(new uint8_t[iboData.size() * 4]) , m_surfaces(std::move(surfaces)) , m_skinBanks(skinBanks) { if (m_iboSz) { athena::io::MemoryWriter w(m_iboData.get(), m_iboSz); w.enumerateLittle(iboData); } } } // namespace hecl::blender