/* filter_sse2_intrinsics.c - SSE2 optimized filter functions * * Copyright (c) 2018 Cosmin Truta * Copyright (c) 2016-2017 Glenn Randers-Pehrson * Written by Mike Klein and Matt Sarett * Derived from arm/filter_neon_intrinsics.c * * This code is released under the libpng license. * For conditions of distribution and use, see the disclaimer * and license in png.h */ #include "../pngpriv.h" #ifdef PNG_READ_SUPPORTED #if PNG_INTEL_SSE_IMPLEMENTATION > 0 #include /* Functions in this file look at most 3 pixels (a,b,c) to predict the 4th (d). * They're positioned like this: * prev: c b * row: a d * The Sub filter predicts d=a, Avg d=(a+b)/2, and Paeth predicts d to be * whichever of a, b, or c is closest to p=a+b-c. */ static __m128i load4(const void* p) { int tmp; memcpy(&tmp, p, sizeof(tmp)); return _mm_cvtsi32_si128(tmp); } static void store4(void* p, __m128i v) { int tmp = _mm_cvtsi128_si32(v); memcpy(p, &tmp, sizeof(int)); } static __m128i load3(const void* p) { png_uint_32 tmp = 0; memcpy(&tmp, p, 3); return _mm_cvtsi32_si128(tmp); } static void store3(void* p, __m128i v) { int tmp = _mm_cvtsi128_si32(v); memcpy(p, &tmp, 3); } void png_read_filter_row_sub3_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { /* The Sub filter predicts each pixel as the previous pixel, a. * There is no pixel to the left of the first pixel. It's encoded directly. * That works with our main loop if we just say that left pixel was zero. */ size_t rb; __m128i a, d = _mm_setzero_si128(); png_debug(1, "in png_read_filter_row_sub3_sse2"); rb = row_info->rowbytes; while (rb >= 4) { a = d; d = load4(row); d = _mm_add_epi8(d, a); store3(row, d); row += 3; rb -= 3; } if (rb > 0) { a = d; d = load3(row); d = _mm_add_epi8(d, a); store3(row, d); row += 3; rb -= 3; } PNG_UNUSED(prev) } void png_read_filter_row_sub4_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { /* The Sub filter predicts each pixel as the previous pixel, a. * There is no pixel to the left of the first pixel. It's encoded directly. * That works with our main loop if we just say that left pixel was zero. */ size_t rb; __m128i a, d = _mm_setzero_si128(); png_debug(1, "in png_read_filter_row_sub4_sse2"); rb = row_info->rowbytes+4; while (rb > 4) { a = d; d = load4(row); d = _mm_add_epi8(d, a); store4(row, d); row += 4; rb -= 4; } PNG_UNUSED(prev) } void png_read_filter_row_avg3_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { /* The Avg filter predicts each pixel as the (truncated) average of a and b. * There's no pixel to the left of the first pixel. Luckily, it's * predicted to be half of the pixel above it. So again, this works * perfectly with our loop if we make sure a starts at zero. */ size_t rb; const __m128i zero = _mm_setzero_si128(); __m128i b; __m128i a, d = zero; png_debug(1, "in png_read_filter_row_avg3_sse2"); rb = row_info->rowbytes; while (rb >= 4) { __m128i avg; b = load4(prev); a = d; d = load4(row ); /* PNG requires a truncating average, so we can't just use _mm_avg_epu8 */ avg = _mm_avg_epu8(a,b); /* ...but we can fix it up by subtracting off 1 if it rounded up. */ avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), _mm_set1_epi8(1))); d = _mm_add_epi8(d, avg); store3(row, d); prev += 3; row += 3; rb -= 3; } if (rb > 0) { __m128i avg; b = load3(prev); a = d; d = load3(row ); /* PNG requires a truncating average, so we can't just use _mm_avg_epu8 */ avg = _mm_avg_epu8(a,b); /* ...but we can fix it up by subtracting off 1 if it rounded up. */ avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), _mm_set1_epi8(1))); d = _mm_add_epi8(d, avg); store3(row, d); prev += 3; row += 3; rb -= 3; } } void png_read_filter_row_avg4_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { /* The Avg filter predicts each pixel as the (truncated) average of a and b. * There's no pixel to the left of the first pixel. Luckily, it's * predicted to be half of the pixel above it. So again, this works * perfectly with our loop if we make sure a starts at zero. */ size_t rb; const __m128i zero = _mm_setzero_si128(); __m128i b; __m128i a, d = zero; png_debug(1, "in png_read_filter_row_avg4_sse2"); rb = row_info->rowbytes+4; while (rb > 4) { __m128i avg; b = load4(prev); a = d; d = load4(row ); /* PNG requires a truncating average, so we can't just use _mm_avg_epu8 */ avg = _mm_avg_epu8(a,b); /* ...but we can fix it up by subtracting off 1 if it rounded up. */ avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), _mm_set1_epi8(1))); d = _mm_add_epi8(d, avg); store4(row, d); prev += 4; row += 4; rb -= 4; } } /* Returns |x| for 16-bit lanes. */ static __m128i abs_i16(__m128i x) { #if PNG_INTEL_SSE_IMPLEMENTATION >= 2 return _mm_abs_epi16(x); #else /* Read this all as, return x<0 ? -x : x. * To negate two's complement, you flip all the bits then add 1. */ __m128i is_negative = _mm_cmplt_epi16(x, _mm_setzero_si128()); /* Flip negative lanes. */ x = _mm_xor_si128(x, is_negative); /* +1 to negative lanes, else +0. */ x = _mm_sub_epi16(x, is_negative); return x; #endif } /* Bytewise c ? t : e. */ static __m128i if_then_else(__m128i c, __m128i t, __m128i e) { #if PNG_INTEL_SSE_IMPLEMENTATION >= 3 return _mm_blendv_epi8(e,t,c); #else return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e)); #endif } void png_read_filter_row_paeth3_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { /* Paeth tries to predict pixel d using the pixel to the left of it, a, * and two pixels from the previous row, b and c: * prev: c b * row: a d * The Paeth function predicts d to be whichever of a, b, or c is nearest to * p=a+b-c. * * The first pixel has no left context, and so uses an Up filter, p = b. * This works naturally with our main loop's p = a+b-c if we force a and c * to zero. * Here we zero b and d, which become c and a respectively at the start of * the loop. */ size_t rb; const __m128i zero = _mm_setzero_si128(); __m128i c, b = zero, a, d = zero; png_debug(1, "in png_read_filter_row_paeth3_sse2"); rb = row_info->rowbytes; while (rb >= 4) { /* It's easiest to do this math (particularly, deal with pc) with 16-bit * intermediates. */ __m128i pa,pb,pc,smallest,nearest; c = b; b = _mm_unpacklo_epi8(load4(prev), zero); a = d; d = _mm_unpacklo_epi8(load4(row ), zero); /* (p-a) == (a+b-c - a) == (b-c) */ pa = _mm_sub_epi16(b,c); /* (p-b) == (a+b-c - b) == (a-c) */ pb = _mm_sub_epi16(a,c); /* (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) */ pc = _mm_add_epi16(pa,pb); pa = abs_i16(pa); /* |p-a| */ pb = abs_i16(pb); /* |p-b| */ pc = abs_i16(pc); /* |p-c| */ smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); /* Paeth breaks ties favoring a over b over c. */ nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, if_then_else(_mm_cmpeq_epi16(smallest, pb), b, c)); /* Note `_epi8`: we need addition to wrap modulo 255. */ d = _mm_add_epi8(d, nearest); store3(row, _mm_packus_epi16(d,d)); prev += 3; row += 3; rb -= 3; } if (rb > 0) { /* It's easiest to do this math (particularly, deal with pc) with 16-bit * intermediates. */ __m128i pa,pb,pc,smallest,nearest; c = b; b = _mm_unpacklo_epi8(load3(prev), zero); a = d; d = _mm_unpacklo_epi8(load3(row ), zero); /* (p-a) == (a+b-c - a) == (b-c) */ pa = _mm_sub_epi16(b,c); /* (p-b) == (a+b-c - b) == (a-c) */ pb = _mm_sub_epi16(a,c); /* (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) */ pc = _mm_add_epi16(pa,pb); pa = abs_i16(pa); /* |p-a| */ pb = abs_i16(pb); /* |p-b| */ pc = abs_i16(pc); /* |p-c| */ smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); /* Paeth breaks ties favoring a over b over c. */ nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, if_then_else(_mm_cmpeq_epi16(smallest, pb), b, c)); /* Note `_epi8`: we need addition to wrap modulo 255. */ d = _mm_add_epi8(d, nearest); store3(row, _mm_packus_epi16(d,d)); prev += 3; row += 3; rb -= 3; } } void png_read_filter_row_paeth4_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { /* Paeth tries to predict pixel d using the pixel to the left of it, a, * and two pixels from the previous row, b and c: * prev: c b * row: a d * The Paeth function predicts d to be whichever of a, b, or c is nearest to * p=a+b-c. * * The first pixel has no left context, and so uses an Up filter, p = b. * This works naturally with our main loop's p = a+b-c if we force a and c * to zero. * Here we zero b and d, which become c and a respectively at the start of * the loop. */ size_t rb; const __m128i zero = _mm_setzero_si128(); __m128i pa,pb,pc,smallest,nearest; __m128i c, b = zero, a, d = zero; png_debug(1, "in png_read_filter_row_paeth4_sse2"); rb = row_info->rowbytes+4; while (rb > 4) { /* It's easiest to do this math (particularly, deal with pc) with 16-bit * intermediates. */ c = b; b = _mm_unpacklo_epi8(load4(prev), zero); a = d; d = _mm_unpacklo_epi8(load4(row ), zero); /* (p-a) == (a+b-c - a) == (b-c) */ pa = _mm_sub_epi16(b,c); /* (p-b) == (a+b-c - b) == (a-c) */ pb = _mm_sub_epi16(a,c); /* (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) */ pc = _mm_add_epi16(pa,pb); pa = abs_i16(pa); /* |p-a| */ pb = abs_i16(pb); /* |p-b| */ pc = abs_i16(pc); /* |p-c| */ smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); /* Paeth breaks ties favoring a over b over c. */ nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, if_then_else(_mm_cmpeq_epi16(smallest, pb), b, c)); /* Note `_epi8`: we need addition to wrap modulo 255. */ d = _mm_add_epi8(d, nearest); store4(row, _mm_packus_epi16(d,d)); prev += 4; row += 4; rb -= 4; } } #endif /* PNG_INTEL_SSE_IMPLEMENTATION > 0 */ #endif /* READ */