#ifndef __DNA_COMMON_HPP__ #define __DNA_COMMON_HPP__ #include #include #include #include "HECL/HECL.hpp" #include "HECL/Database.hpp" #include "../SpecBase.hpp" namespace Retro { extern LogVisor::LogModule LogDNACommon; /* This comes up a great deal */ typedef Athena::io::DNA BigDNA; typedef Athena::io::DNAYaml BigYAML; /* FourCC with DNA read/write */ class DNAFourCC final : public BigYAML, public HECL::FourCC { public: DNAFourCC() : HECL::FourCC() {} DNAFourCC(const HECL::FourCC& other) : HECL::FourCC() {num = other.toUint32();} DNAFourCC(const char* name) : HECL::FourCC(name) {} DNAFourCC(uint32_t n) : HECL::FourCC(n) {} Delete expl; void read(Athena::io::IStreamReader& reader) {reader.readUBytesToBuf(fcc, 4);} void write(Athena::io::IStreamWriter& writer) const {writer.writeUBytes((atUint8*)fcc, 4);} void fromYAML(Athena::io::YAMLDocReader& reader) {std::string rs = reader.readString(nullptr); strncpy(fcc, rs.c_str(), 4);} void toYAML(Athena::io::YAMLDocWriter& writer) const {writer.writeString(nullptr, std::string(fcc, 4));} size_t binarySize(size_t __isz) const {return __isz + 4;} }; using FourCC = HECL::FourCC; /* PAK 32-bit Unique ID */ class UniqueID32 : public BigYAML { uint32_t m_id = 0xffffffff; public: Delete expl; operator bool() const {return m_id != 0xffffffff;} void read(Athena::io::IStreamReader& reader) {m_id = reader.readUint32Big();} void write(Athena::io::IStreamWriter& writer) const {writer.writeUint32Big(m_id);} void fromYAML(Athena::io::YAMLDocReader& reader) {m_id = reader.readUint32(nullptr);} void toYAML(Athena::io::YAMLDocWriter& writer) const {writer.writeUint32(nullptr, m_id);} size_t binarySize(size_t __isz) const {return __isz + 4;} bool operator!=(const UniqueID32& other) const {return m_id != other.m_id;} bool operator==(const UniqueID32& other) const {return m_id == other.m_id;} uint32_t toUint32() const {return m_id;} std::string toString() const { char buf[9]; snprintf(buf, 9, "%08X", m_id); return std::string(buf); } UniqueID32() = default; UniqueID32(Athena::io::IStreamReader& reader) {read(reader);} UniqueID32(const char* hexStr) { char copy[9]; strncpy(copy, hexStr, 8); copy[8] = '\0'; m_id = strtoul(copy, nullptr, 16); } }; /* PAK 64-bit Unique ID */ class UniqueID64 : public BigYAML { uint64_t m_id = 0xffffffffffffffff; public: Delete expl; operator bool() const {return m_id != 0xffffffffffffffff;} void read(Athena::io::IStreamReader& reader) {m_id = reader.readUint64Big();} void write(Athena::io::IStreamWriter& writer) const {writer.writeUint64Big(m_id);} void fromYAML(Athena::io::YAMLDocReader& reader) {m_id = reader.readUint64(nullptr);} void toYAML(Athena::io::YAMLDocWriter& writer) const {writer.writeUint64(nullptr, m_id);} size_t binarySize(size_t __isz) const {return __isz + 8;} bool operator!=(const UniqueID64& other) const {return m_id != other.m_id;} bool operator==(const UniqueID64& other) const {return m_id == other.m_id;} uint64_t toUint64() const {return m_id;} std::string toString() const { char buf[17]; snprintf(buf, 17, "%016" PRIX64, m_id); return std::string(buf); } UniqueID64() = default; UniqueID64(Athena::io::IStreamReader& reader) {read(reader);} UniqueID64(const char* hexStr) { char copy[17]; strncpy(copy, hexStr, 16); copy[16] = '\0'; m_id = strtouq(copy, nullptr, 16); } }; /* PAK 128-bit Unique ID */ class UniqueID128 : public BigYAML { union { uint64_t m_id[2]; #if __SSE__ __m128i m_id128; #endif }; public: Delete expl; UniqueID128() {m_id[0]=0xffffffffffffffff; m_id[1]=0xffffffffffffffff;} operator bool() const {return m_id[0] != 0xffffffffffffffff && m_id[1] != 0xffffffffffffffff;} void read(Athena::io::IStreamReader& reader) { m_id[0] = reader.readUint64Big(); m_id[1] = reader.readUint64Big(); } void write(Athena::io::IStreamWriter& writer) const { writer.writeUint64Big(m_id[0]); writer.writeUint64Big(m_id[1]); } void fromYAML(Athena::io::YAMLDocReader& reader) { std::string str = reader.readString(nullptr); while (str.size() < 32) str += '0'; std::string hStr(str.begin(), str.begin() + 16); std::string lStr(str.begin() + 16, str.begin() + 32); m_id[0] = strtoull(hStr.c_str(), nullptr, 16); m_id[1] = strtoull(lStr.c_str(), nullptr, 16); } void toYAML(Athena::io::YAMLDocWriter& writer) const { writer.writeString(nullptr, toString().c_str()); } size_t binarySize(size_t __isz) const {return __isz + 16;} bool operator!=(const UniqueID128& other) const { #if __SSE__ __m128i vcmp = _mm_cmpeq_epi32(m_id128, other.m_id128); int vmask = _mm_movemask_epi8(vcmp); return vmask != 0xffff; #else return (m_id[0] != other.m_id[0]) || (m_id[1] != other.m_id[1]); #endif } bool operator==(const UniqueID128& other) const { #if __SSE__ __m128i vcmp = _mm_cmpeq_epi32(m_id128, other.m_id128); int vmask = _mm_movemask_epi8(vcmp); return vmask == 0xffff; #else return (m_id[0] == other.m_id[0]) && (m_id[1] == other.m_id[1]); #endif } uint64_t toHighUint64() const {return m_id[0];} uint64_t toLowUint64() const {return m_id[1];} std::string toString() const { char buf[33]; snprintf(buf, 33, "%016" PRIX64 "%016" PRIX64, m_id[0], m_id[1]); return std::string(buf); } }; /* Case-insensitive comparator for std::map sorting */ struct CaseInsensitiveCompare { bool operator()(const std::string& lhs, const std::string& rhs) const { #if _WIN32 if (_stricmp(lhs.c_str(), rhs.c_str()) < 0) #else if (strcasecmp(lhs.c_str(), rhs.c_str()) < 0) #endif return true; return false; } #if _WIN32 bool operator()(const std::wstring& lhs, const std::wstring& rhs) const { if (_wcsicmp(lhs.c_str(), rhs.c_str()) < 0) return true; return false; } #endif }; /* Word Bitmap reader/writer */ class WordBitmap { std::vector m_words; size_t m_bitCount = 0; public: void read(Athena::io::IStreamReader& reader, size_t bitCount) { m_bitCount = bitCount; size_t wordCount = (bitCount + 31) / 32; m_words.clear(); m_words.reserve(wordCount); for (size_t w=0 ; w= m_words.size()) return false; size_t wordCur = idx % 32; return (m_words[wordIdx] >> wordCur) & 0x1; } void setBit(size_t idx) { size_t wordIdx = idx / 32; while (wordIdx >= m_words.size()) m_words.push_back(0); size_t wordCur = idx % 32; m_words[wordIdx] |= (1 << wordCur); } void unsetBit(size_t idx) { size_t wordIdx = idx / 32; while (wordIdx >= m_words.size()) m_words.push_back(0); size_t wordCur = idx % 32; m_words[wordIdx] &= ~(1 << wordCur); } void clear() { m_words.clear(); } class Iterator : public std::iterator { friend class WordBitmap; const WordBitmap& m_bmp; size_t m_idx = 0; Iterator(const WordBitmap& bmp, size_t idx) : m_bmp(bmp), m_idx(idx) {} public: Iterator& operator++() {++m_idx; return *this;} bool operator*() {return m_bmp.getBit(m_idx);} bool operator!=(const Iterator& other) const {return m_idx != other.m_idx;} }; Iterator begin() const {return Iterator(*this, 0);} Iterator end() const {return Iterator(*this, m_bitCount);} }; /* Resource cooker function */ typedef std::function ResCooker; } /* Hash template-specializations for UniqueID types */ namespace std { template<> struct hash { size_t operator()(const Retro::DNAFourCC& fcc) const {return fcc.toUint32();} }; template<> struct hash { size_t operator()(const Retro::UniqueID32& id) const {return id.toUint32();} }; template<> struct hash { size_t operator()(const Retro::UniqueID64& id) const {return id.toUint64();} }; template<> struct hash { size_t operator()(const Retro::UniqueID128& id) const {return id.toHighUint64() ^ id.toLowUint64();} }; } #endif // __DNA_COMMON_HPP__