#include #include "OBBTreeBuilder.hpp" #include "zeus/CTransform.hpp" #include "DataSpec/DNAMP1/DCLN.hpp" #include "gmm/gmm.h" namespace DataSpec { using ColMesh = hecl::BlenderConnection::DataStream::ColMesh; struct FittedOBB { zeus::CTransform xf; zeus::CVector3f he; }; static std::vector MakeRootTriangleIndex(const ColMesh& mesh) { std::vector ret; ret.reserve(mesh.trianges.size()); for (int i = 0; i < mesh.trianges.size(); ++i) ret.push_back(i); return ret; } static std::unordered_set GetTriangleVerts(const ColMesh& mesh, int triIdx) { const ColMesh::Triangle& T = mesh.trianges[triIdx]; std::unordered_set verts; verts.insert(mesh.edges[T.edges[0]].verts[0]); verts.insert(mesh.edges[T.edges[0]].verts[1]); verts.insert(mesh.edges[T.edges[1]].verts[0]); verts.insert(mesh.edges[T.edges[1]].verts[1]); verts.insert(mesh.edges[T.edges[2]].verts[0]); verts.insert(mesh.edges[T.edges[2]].verts[1]); return verts; } // method to set the OBB parameters which produce a box oriented according to // the covariance matrix C, which just containts the points pnts static FittedOBB BuildFromCovarianceMatrix(gmm::dense_matrix& C, const ColMesh& mesh, const std::vector& index) { FittedOBB ret; // extract the eigenvalues and eigenvectors from C gmm::dense_matrix eigvec(3,3); std::vector eigval(3); gmm::symmetric_qr_algorithm(C, eigval, eigvec); // find the right, up and forward vectors from the eigenvectors zeus::CVector3f r(eigvec(0,0), eigvec(1,0), eigvec(2,0)); zeus::CVector3f u(eigvec(0,1), eigvec(1,1), eigvec(2,1)); zeus::CVector3f f(eigvec(0,2), eigvec(1,2), eigvec(2,2)); r.normalize(); u.normalize(), f.normalize(); // set the rotation matrix using the eigvenvectors ret.xf.basis[0][0]=r.x; ret.xf.basis[1][0]=u.x; ret.xf.basis[2][0]=f.x; ret.xf.basis[0][1]=r.y; ret.xf.basis[1][1]=u.y; ret.xf.basis[2][1]=f.y; ret.xf.basis[0][2]=r.z; ret.xf.basis[1][2]=u.z; ret.xf.basis[2][2]=f.z; // now build the bounding box extents in the rotated frame zeus::CVector3f minim(1e10f, 1e10f, 1e10f), maxim(-1e10f, -1e10f, -1e10f); for (int triIdx : index) { std::unordered_set verts = GetTriangleVerts(mesh, triIdx); for (uint32_t v : verts) { const zeus::CVector3f& p = mesh.verts[v].val; zeus::CVector3f p_prime(r.dot(p), u.dot(p), f.dot(p)); minim = zeus::min(minim, p_prime); maxim = zeus::max(maxim, p_prime); } } // set the center of the OBB to be the average of the // minimum and maximum, and the extents be half of the // difference between the minimum and maximum zeus::CVector3f center = (maxim + minim) * 0.5f; ret.xf.origin = ret.xf.basis * center; ret.he = (maxim - minim) * 0.5f; return ret; } // builds an OBB from triangles specified as an array of // points with integer indices into the point array. Forms // the covariance matrix for the triangles, then uses the // method build_from_covariance_matrix() method to fit // the box. ALL points will be fit in the box, regardless // of whether they are indexed by a triangle or not. static FittedOBB FitOBB(const ColMesh& mesh, const std::vector& index) { float Ai, Am=0.0; zeus::CVector3f mu, mui; gmm::dense_matrix C(3,3); float cxx=0.0, cxy=0.0, cxz=0.0, cyy=0.0, cyz=0.0, czz=0.0; // loop over the triangles this time to find the // mean location for (int i : index) { const ColMesh::Triangle& T = mesh.trianges[i]; std::unordered_set verts = GetTriangleVerts(mesh, i); auto it = verts.begin(); zeus::CVector3f p = mesh.verts[*it++].val; zeus::CVector3f q = mesh.verts[*it++].val; zeus::CVector3f r = mesh.verts[*it++].val; mui = (p+q+r)/3.f; Ai = (q-p).cross(r-p).magnitude() / 2.f; mu += mui*Ai; Am += Ai; // these bits set the c terms to Am*E[xx], Am*E[xy], Am*E[xz].... cxx += ( 9.0*mui.x*mui.x + p.x*p.x + q.x*q.x + r.x*r.x )*(Ai/12.0); cxy += ( 9.0*mui.x*mui.y + p.x*p.y + q.x*q.y + r.x*r.y )*(Ai/12.0); cxz += ( 9.0*mui.x*mui.z + p.x*p.z + q.x*q.z + r.x*r.z )*(Ai/12.0); cyy += ( 9.0*mui.y*mui.y + p.y*p.y + q.y*q.y + r.y*r.y )*(Ai/12.0); cyz += ( 9.0*mui.y*mui.z + p.y*p.z + q.y*q.z + r.y*r.z )*(Ai/12.0); } // divide out the Am fraction from the average position and // covariance terms mu = mu / Am; cxx /= Am; cxy /= Am; cxz /= Am; cyy /= Am; cyz /= Am; czz /= Am; // now subtract off the E[x]*E[x], E[x]*E[y], ... terms cxx -= mu.x*mu.x; cxy -= mu.x*mu.y; cxz -= mu.x*mu.z; cyy -= mu.y*mu.y; cyz -= mu.y*mu.z; czz -= mu.z*mu.z; // now build the covariance matrix C(0,0)=cxx; C(0,1)=cxy; C(0,2)=cxz; C(1,0)=cxy; C(1,1)=cyy; C(1,2)=cyz; C(2,0)=cxz; C(1,2)=cyz; C(2,2)=czz; // set the obb parameters from the covariance matrix return BuildFromCovarianceMatrix(C, mesh, index); } template static void MakeLeaf(const ColMesh& mesh, const std::vector& index, Node& n) { n.left.reset(); n.right.reset(); n.isLeaf = true; n.leafData = std::make_unique(); n.leafData->triangleIndexCount = atUint32(index.size()); n.leafData->triangleIndices.reserve(n.leafData->triangleIndexCount); for (int i : index) n.leafData->triangleIndices.push_back(i); } template static std::unique_ptr RecursiveMakeNode(const ColMesh& mesh, const std::vector& index) { // calculate root OBB FittedOBB obb = FitOBB(mesh, index); // make results row-major and also invert the rotation basis obb.xf.basis.transpose(); std::unique_ptr n = std::make_unique(); for (int i = 0; i < 3; ++i) { n->xf[i] = zeus::CVector4f{obb.xf.basis[i]}; n->xf[i].vec[3] = obb.xf.origin[i]; } n->halfExtent = obb.he; // terminate branch when volume < 1.0 if (obb.he[0] * obb.he[1] * obb.he[2] < 1.f) { MakeLeaf(mesh, index, *n); return n; } n->isLeaf = false; std::vector indexNeg[3]; std::vector indexPos[3]; for (int c = 0; c < 3; ++c) { // subdivide negative side indexNeg[c].reserve(index.size()); for (int i : index) { std::unordered_set verts = GetTriangleVerts(mesh, i); for (uint32_t vtx : verts) { zeus::CVector3f v = mesh.verts[vtx].val; v = obb.xf.basis * (v - obb.xf.origin); if (v[c] < 0.f) { indexNeg[c].push_back(i); break; } } } // subdivide positive side indexPos[c].reserve(index.size()); for (int i : index) { std::unordered_set verts = GetTriangleVerts(mesh, i); for (uint32_t vtx : verts) { zeus::CVector3f v = mesh.verts[vtx].val; v = obb.xf.basis * (v - obb.xf.origin); if (v[c] >= 0.f) { indexPos[c].push_back(i); break; } } } } size_t idxMin = index.size(); int minComp = -1; for (int c = 0; c < 3; ++c) { size_t test = std::max(indexNeg[c].size(), indexPos[c].size()); if (test < idxMin && test < index.size() * 3 / 4) { minComp = c; idxMin = test; } } if (minComp == -1) { MakeLeaf(mesh, index, *n); return n; } n->left = RecursiveMakeNode(mesh, indexNeg[minComp]); n->right = RecursiveMakeNode(mesh, indexPos[minComp]); return n; } template std::unique_ptr OBBTreeBuilder::buildCol(const ColMesh& mesh) { std::vector root = MakeRootTriangleIndex(mesh); return RecursiveMakeNode(mesh, root); } template std::unique_ptr OBBTreeBuilder::buildCol(const ColMesh& mesh); }