#include "DataSpec/DNACommon/OBBTreeBuilder.hpp" #include #include #include #include "DataSpec/DNAMP1/DCLN.hpp" #include #include #include #include namespace DataSpec { using ColMesh = hecl::blender::ColMesh; struct FittedOBB { zeus::CTransform xf; zeus::CVector3f he; }; static std::vector MakeRootTriangleIndex(const ColMesh& mesh) { std::vector ret; ret.reserve(mesh.trianges.size()); for (size_t i = 0; i < mesh.trianges.size(); ++i) ret.push_back(i); return ret; } static std::unordered_set GetTriangleVerts(const ColMesh& mesh, int triIdx) { const ColMesh::Triangle& T = mesh.trianges[triIdx]; std::unordered_set verts; verts.insert(mesh.edges[T.edges[0]].verts[0]); verts.insert(mesh.edges[T.edges[0]].verts[1]); verts.insert(mesh.edges[T.edges[1]].verts[0]); verts.insert(mesh.edges[T.edges[1]].verts[1]); verts.insert(mesh.edges[T.edges[2]].verts[0]); verts.insert(mesh.edges[T.edges[2]].verts[1]); return verts; } // method to set the OBB parameters which produce a box oriented according to // the covariance matrix C, which just containts the points pnts static FittedOBB BuildFromCovarianceMatrix(gmm::dense_matrix& C, const ColMesh& mesh, const std::vector& index) { FittedOBB ret; // extract the eigenvalues and eigenvectors from C gmm::dense_matrix eigvec(3, 3); std::vector eigval(3); using namespace gmm; using MAT1 = gmm::dense_matrix; gmm::symmetric_qr_algorithm(C, eigval, eigvec, default_tol_for_qr); // find the right, up and forward vectors from the eigenvectors zeus::CVector3f r(eigvec(0, 0), eigvec(1, 0), eigvec(2, 0)); zeus::CVector3f f(eigvec(0, 1), eigvec(1, 1), eigvec(2, 1)); zeus::CVector3f u(eigvec(0, 2), eigvec(1, 2), eigvec(2, 2)); r.normalize(); f.normalize(); u.normalize(); // set the rotation matrix using the eigvenvectors ret.xf.basis[0] = r; ret.xf.basis[1] = f; ret.xf.basis[2] = u; ret.xf.orthonormalize(); // now build the bounding box extents in the rotated frame zeus::CVector3f minim(1e10f, 1e10f, 1e10f), maxim(-1e10f, -1e10f, -1e10f); for (int triIdx : index) { std::unordered_set verts = GetTriangleVerts(mesh, triIdx); for (uint32_t v : verts) { const zeus::CVector3f& p = mesh.verts[v].val; zeus::CVector3f p_prime(ret.xf.basis[0].dot(p), ret.xf.basis[1].dot(p), ret.xf.basis[2].dot(p)); minim = zeus::min(minim, p_prime); maxim = zeus::max(maxim, p_prime); } } // set the center of the OBB to be the average of the // minimum and maximum, and the extents be half of the // difference between the minimum and maximum zeus::CVector3f center = (maxim + minim) * 0.5f; ret.xf.origin = ret.xf.basis * center; ret.he = (maxim - minim) * 0.5f; return ret; } // builds an OBB from triangles specified as an array of // points with integer indices into the point array. Forms // the covariance matrix for the triangles, then uses the // method build_from_covariance_matrix() method to fit // the box. ALL points will be fit in the box, regardless // of whether they are indexed by a triangle or not. static FittedOBB FitOBB(const ColMesh& mesh, const std::vector& index) { float Ai, Am = 0.0; zeus::CVector3f mu, mui; gmm::dense_matrix C(3, 3); float cxx = 0.0, cxy = 0.0, cxz = 0.0, cyy = 0.0, cyz = 0.0, czz = 0.0; // loop over the triangles this time to find the // mean location for (int i : index) { std::unordered_set verts = GetTriangleVerts(mesh, i); auto it = verts.begin(); zeus::CVector3f p = mesh.verts[*it++].val; zeus::CVector3f q = mesh.verts[*it++].val; zeus::CVector3f r = mesh.verts[*it++].val; mui = (p + q + r) / 3.f; Ai = (q - p).cross(r - p).magnitude() / 2.f; mu += mui * Ai; Am += Ai; // these bits set the c terms to Am*E[xx], Am*E[xy], Am*E[xz].... cxx += (9.0 * mui.x() * mui.x() + p.x() * p.x() + q.x() * q.x() + r.x() * r.x()) * (Ai / 12.0); cxy += (9.0 * mui.x() * mui.y() + p.x() * p.y() + q.x() * q.y() + r.x() * r.y()) * (Ai / 12.0); cxz += (9.0 * mui.x() * mui.z() + p.x() * p.z() + q.x() * q.z() + r.x() * r.z()) * (Ai / 12.0); cyy += (9.0 * mui.y() * mui.y() + p.y() * p.y() + q.y() * q.y() + r.y() * r.y()) * (Ai / 12.0); cyz += (9.0 * mui.y() * mui.z() + p.y() * p.z() + q.y() * q.z() + r.y() * r.z()) * (Ai / 12.0); } if (zeus::close_enough(Am, 0.f)) return {}; // divide out the Am fraction from the average position and // covariance terms mu = mu / Am; cxx /= Am; cxy /= Am; cxz /= Am; cyy /= Am; cyz /= Am; czz /= Am; // now subtract off the E[x]*E[x], E[x]*E[y], ... terms cxx -= mu.x() * mu.x(); cxy -= mu.x() * mu.y(); cxz -= mu.x() * mu.z(); cyy -= mu.y() * mu.y(); cyz -= mu.y() * mu.z(); czz -= mu.z() * mu.z(); // now build the covariance matrix C(0, 0) = cxx; C(0, 1) = cxy; C(0, 2) = cxz; C(1, 0) = cxy; C(1, 1) = cyy; C(1, 2) = cyz; C(2, 0) = cxz; C(2, 1) = cyz; C(2, 2) = czz; // set the obb parameters from the covariance matrix return BuildFromCovarianceMatrix(C, mesh, index); } template static void MakeLeaf(const ColMesh& mesh, const std::vector& index, Node& n) { n.left.reset(); n.right.reset(); n.isLeaf = true; n.leafData = std::make_unique(); n.leafData->triangleIndexCount = atUint32(index.size()); n.leafData->triangleIndices.reserve(n.leafData->triangleIndexCount); for (int i : index) n.leafData->triangleIndices.push_back(i); } template static std::unique_ptr RecursiveMakeNode(const ColMesh& mesh, const std::vector& index) { // calculate root OBB FittedOBB obb = FitOBB(mesh, index); // make results row-major and also invert the rotation basis obb.xf.basis.transpose(); std::unique_ptr n = std::make_unique(); for (int i = 0; i < 3; ++i) { n->xf[i] = zeus::CVector4f{obb.xf.basis[i]}; n->xf[i].simd[3] = float(obb.xf.origin[i]); } n->halfExtent = obb.he; // terminate branch when volume < 1.0 if (obb.he[0] * obb.he[1] * obb.he[2] < 1.f) { MakeLeaf(mesh, index, *n); return n; } n->isLeaf = false; std::vector indexNeg[3]; std::vector indexPos[3]; for (int c = 0; c < 3; ++c) { // subdivide negative side indexNeg[c].reserve(index.size()); for (int i : index) { std::unordered_set verts = GetTriangleVerts(mesh, i); for (uint32_t vtx : verts) { zeus::CVector3f v = mesh.verts[vtx].val; v = obb.xf.basis * (v - obb.xf.origin); if (v[c] < 0.f) { indexNeg[c].push_back(i); break; } } } // subdivide positive side indexPos[c].reserve(index.size()); for (int i : index) { std::unordered_set verts = GetTriangleVerts(mesh, i); for (uint32_t vtx : verts) { zeus::CVector3f v = mesh.verts[vtx].val; v = obb.xf.basis * (v - obb.xf.origin); if (v[c] >= 0.f) { indexPos[c].push_back(i); break; } } } } size_t idxMin = index.size(); int minComp = -1; for (int c = 0; c < 3; ++c) { size_t test = std::max(indexNeg[c].size(), indexPos[c].size()); if (test < idxMin && test < index.size() * 3 / 4) { minComp = c; idxMin = test; } } if (minComp == -1) { MakeLeaf(mesh, index, *n); return n; } n->left = RecursiveMakeNode(mesh, indexNeg[minComp]); n->right = RecursiveMakeNode(mesh, indexPos[minComp]); return n; } template std::unique_ptr OBBTreeBuilder::buildCol(const ColMesh& mesh) { std::vector root = MakeRootTriangleIndex(mesh); return RecursiveMakeNode(mesh, root); } template std::unique_ptr OBBTreeBuilder::buildCol(const ColMesh& mesh); } // namespace DataSpec