mirror of https://github.com/AxioDL/metaforce.git
625 lines
19 KiB
C++
625 lines
19 KiB
C++
#include "Runtime/Collision/CAreaOctTree.hpp"
|
||
|
||
#include "Runtime/Collision/CMaterialFilter.hpp"
|
||
#include "IOStreams.hpp"
|
||
|
||
#include <array>
|
||
#include <cfloat>
|
||
#include <cmath>
|
||
#include <utility>
|
||
|
||
#include <hecl/hecl.hpp>
|
||
#include <zeus/CVector2i.hpp>
|
||
|
||
namespace metaforce {
|
||
|
||
static bool _close_enough(float f1, float f2, float epsilon) { return std::fabs(f1 - f2) <= epsilon; }
|
||
|
||
static bool BoxLineTest(const zeus::CAABox& aabb, const zeus::CLine& line, float& lT, float& hT) {
|
||
zeus::simd_floats aabbMinF(aabb.min.mSimd);
|
||
zeus::simd_floats aabbMaxF(aabb.max.mSimd);
|
||
zeus::simd_floats lineOrigin(line.origin.mSimd);
|
||
zeus::simd_floats lineDir(line.dir.mSimd);
|
||
const float* aabbMin = aabbMinF.data();
|
||
const float* aabbMax = aabbMaxF.data();
|
||
const float* lorigin = lineOrigin.data();
|
||
const float* ldir = lineDir.data();
|
||
lT = -FLT_MAX;
|
||
hT = FLT_MAX;
|
||
|
||
for (int i = 0; i < 3; ++i) {
|
||
if (_close_enough(*ldir, 0.f, 0.000099999997f))
|
||
if (*lorigin < *aabbMin || *lorigin > *aabbMax)
|
||
return false;
|
||
|
||
if (*ldir < 0.f) {
|
||
if (*aabbMax - *lorigin < lT * *ldir)
|
||
lT = (*aabbMax - *lorigin) * 1.f / *ldir;
|
||
if (*aabbMin - *lorigin > hT * *ldir)
|
||
hT = (*aabbMin - *lorigin) * 1.f / *ldir;
|
||
} else {
|
||
if (*aabbMin - *lorigin > lT * *ldir)
|
||
lT = (*aabbMin - *lorigin) * 1.f / *ldir;
|
||
if (*aabbMax - *lorigin < hT * *ldir)
|
||
hT = (*aabbMax - *lorigin) * 1.f / *ldir;
|
||
}
|
||
|
||
++aabbMin;
|
||
++aabbMax;
|
||
++lorigin;
|
||
++ldir;
|
||
}
|
||
|
||
return lT <= hT;
|
||
}
|
||
|
||
constexpr std::array SomeIndexA{1, 2, 4};
|
||
|
||
constexpr std::array SomeIndexB{1, 2, 0};
|
||
|
||
constexpr std::array<std::array<int, 8>, 8> SomeIndexC{{
|
||
{0, 1, 2, 4, 5, 6, 8, 0xA},
|
||
{0, 1, 2, 3, 5, 6, 8, 0xA},
|
||
{0, 1, 2, 4, 5, 6, 9, 0xB},
|
||
{0, 1, 2, 3, 5, 6, 9, 0xC},
|
||
{0, 1, 2, 4, 5, 7, 8, 0xD},
|
||
{0, 1, 2, 3, 5, 7, 8, 0xE},
|
||
{0, 1, 2, 4, 5, 7, 9, 0xF},
|
||
{0, 1, 2, 3, 5, 7, 9, 0xF},
|
||
}};
|
||
|
||
constexpr std::array<std::pair<int, std::array<int, 3>>, 16> SubdivIndex{{
|
||
{0, {0, 0, 0}},
|
||
{1, {0, 0, 0}},
|
||
{1, {1, 0, 0}},
|
||
{2, {0, 1, 0}},
|
||
{2, {1, 0, 0}},
|
||
{1, {2, 0, 0}},
|
||
{2, {0, 2, 0}},
|
||
{2, {2, 0, 0}},
|
||
{2, {2, 1, 0}},
|
||
{2, {1, 2, 0}},
|
||
{3, {0, 2, 1}},
|
||
{3, {1, 0, 2}},
|
||
{3, {0, 1, 2}},
|
||
{3, {2, 1, 0}},
|
||
{3, {2, 0, 1}},
|
||
{3, {1, 2, 0}},
|
||
}};
|
||
|
||
bool CAreaOctTree::Node::LineTestInternal(const zeus::CLine& line, const CMaterialFilter& filter, float lT, float hT,
|
||
float maxT, const zeus::CVector3f& vec) const {
|
||
float lowT = (1.f - FLT_EPSILON * 100.f) * lT;
|
||
float highT = (1.f + FLT_EPSILON * 100.f) * hT;
|
||
if (maxT != 0.f) {
|
||
if (lowT < 0.f)
|
||
lowT = 0.f;
|
||
if (highT > maxT)
|
||
highT = maxT;
|
||
if (lowT > highT)
|
||
return true;
|
||
}
|
||
|
||
if (x20_nodeType == ETreeType::Leaf) {
|
||
TriListReference triList = GetTriangleArray();
|
||
for (u16 i = 0; i < triList.GetSize(); ++i) {
|
||
CCollisionSurface triangle = x1c_owner.GetMasterListTriangle(triList.GetAt(i));
|
||
|
||
// https://en.wikipedia.org/wiki/Möller–Trumbore_intersection_algorithm
|
||
// Find vectors for two edges sharing V0
|
||
zeus::CVector3f e0 = triangle.GetVert(1) - triangle.GetVert(0);
|
||
zeus::CVector3f e1 = triangle.GetVert(2) - triangle.GetVert(0);
|
||
|
||
// Begin calculating determinant - also used to calculate u parameter
|
||
zeus::CVector3f P = line.dir.cross(e1);
|
||
float det = P.dot(e0);
|
||
|
||
// If determinant is near zero, ray lies in plane of triangle
|
||
// or ray is parallel to plane of triangle
|
||
if (std::fabs(det) < (FLT_EPSILON * 10.f))
|
||
continue;
|
||
float invDet = 1.f / det;
|
||
|
||
// Calculate distance from V1 to ray origin
|
||
zeus::CVector3f T = line.origin - triangle.GetVert(0);
|
||
|
||
// Calculate u parameter and test bound
|
||
float u = invDet * T.dot(P);
|
||
|
||
// The intersection lies outside of the triangle
|
||
if (u < 0.f || u > 1.f)
|
||
continue;
|
||
|
||
// Prepare to test v parameter
|
||
zeus::CVector3f Q = T.cross(e0);
|
||
|
||
// Calculate T parameter and test bound
|
||
float t = invDet * Q.dot(e1);
|
||
if (t >= highT || t < lowT)
|
||
continue;
|
||
|
||
// Calculate V parameter and test bound
|
||
float v = invDet * Q.dot(line.dir);
|
||
if (v < 0.f || u + v > 1.f)
|
||
continue;
|
||
|
||
// Do material filter
|
||
CMaterialList matList(triangle.GetSurfaceFlags());
|
||
if (filter.Passes(matList))
|
||
return false;
|
||
}
|
||
} else if (x20_nodeType == ETreeType::Branch) {
|
||
if (GetChildFlags() == 0xA) // 2 leaves
|
||
{
|
||
for (int i = 0; i < 2; ++i) {
|
||
Node child = GetChild(i);
|
||
float tf1 = lT;
|
||
float tf2 = hT;
|
||
if (BoxLineTest(child.GetBoundingBox(), line, tf1, tf2))
|
||
if (!child.LineTestInternal(line, filter, tf1, tf2, maxT, vec))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
zeus::CVector3f center = x0_aabb.center();
|
||
|
||
zeus::CVector3f r6 = line.origin + lT * line.dir;
|
||
zeus::CVector3f r7 = line.origin + hT * line.dir;
|
||
zeus::CVector3f r9 = vec * (center - line.origin);
|
||
|
||
int r28 = 0;
|
||
int r25 = 0;
|
||
int r26 = 0;
|
||
for (size_t i = 0; i < 3; ++i) {
|
||
if (r6[i] >= center[i])
|
||
r28 |= SomeIndexA[i];
|
||
if (r7[i] >= center[i])
|
||
r25 |= SomeIndexA[i];
|
||
if (r9[i] < r9[SomeIndexB[i]])
|
||
r26 |= SomeIndexA[i];
|
||
}
|
||
|
||
float f21 = lT;
|
||
int r26b = r28;
|
||
const std::pair<int, std::array<int, 3>>& idx = SubdivIndex[SomeIndexC[r26][r28 ^ r25]];
|
||
for (int i = 0; i <= idx.first; ++i) {
|
||
float f22 = (i < idx.first) ? r9[idx.second[i]] : hT;
|
||
if (f22 > lowT && f21 <= f22) {
|
||
Node child = GetChild(r26b);
|
||
if (child.x20_nodeType != ETreeType::Invalid)
|
||
if (!child.LineTestInternal(line, filter, f21, f22, maxT, vec))
|
||
return false;
|
||
}
|
||
if (i < idx.first)
|
||
r26b ^= 1 << idx.second[i];
|
||
f21 = f22;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
void CAreaOctTree::Node::LineTestExInternal(const zeus::CLine& line, const CMaterialFilter& filter, SRayResult& res,
|
||
float lT, float hT, float maxT, const zeus::CVector3f& dirRecip) const {
|
||
float lowT = (1.f - FLT_EPSILON * 100.f) * lT;
|
||
float highT = (1.f + FLT_EPSILON * 100.f) * hT;
|
||
if (maxT != 0.f) {
|
||
if (lowT < 0.f)
|
||
lowT = 0.f;
|
||
if (highT > maxT)
|
||
highT = maxT;
|
||
if (lowT > highT)
|
||
return;
|
||
}
|
||
|
||
if (x20_nodeType == ETreeType::Leaf) {
|
||
TriListReference triList = GetTriangleArray();
|
||
float bestT = highT;
|
||
bool foundTriangle = false;
|
||
SRayResult tmpRes;
|
||
|
||
for (u16 i = 0; i < triList.GetSize(); ++i) {
|
||
CCollisionSurface triangle = x1c_owner.GetMasterListTriangle(triList.GetAt(i));
|
||
|
||
// https://en.wikipedia.org/wiki/Möller–Trumbore_intersection_algorithm
|
||
// Find vectors for two edges sharing V0
|
||
zeus::CVector3f e0 = triangle.GetVert(1) - triangle.GetVert(0);
|
||
zeus::CVector3f e1 = triangle.GetVert(2) - triangle.GetVert(0);
|
||
|
||
// Begin calculating determinant - also used to calculate u parameter
|
||
zeus::CVector3f P = line.dir.cross(e1);
|
||
float det = P.dot(e0);
|
||
|
||
// If determinant is near zero, ray lies in plane of triangle
|
||
// or ray is parallel to plane of triangle
|
||
if (std::fabs(det) < (FLT_EPSILON * 10.f))
|
||
continue;
|
||
float invDet = 1.f / det;
|
||
|
||
// Calculate distance from V1 to ray origin
|
||
zeus::CVector3f T = line.origin - triangle.GetVert(0);
|
||
|
||
// Calculate u parameter and test bound
|
||
float u = invDet * T.dot(P);
|
||
|
||
// The intersection lies outside of the triangle
|
||
if (u < 0.f || u > 1.f)
|
||
continue;
|
||
|
||
// Prepare to test v parameter
|
||
zeus::CVector3f Q = T.cross(e0);
|
||
|
||
// Calculate T parameter and test bound
|
||
float t = invDet * Q.dot(e1);
|
||
if (t >= bestT || t < lowT)
|
||
continue;
|
||
|
||
// Calculate V parameter and test bound
|
||
float v = invDet * Q.dot(line.dir);
|
||
if (v < 0.f || u + v > 1.f)
|
||
continue;
|
||
|
||
// Do material filter
|
||
CMaterialList matList(triangle.GetSurfaceFlags());
|
||
if (filter.Passes(matList) && t <= bestT) {
|
||
bestT = t;
|
||
foundTriangle = true;
|
||
tmpRes.x10_surface.emplace(triangle);
|
||
tmpRes.x3c_t = t;
|
||
}
|
||
}
|
||
|
||
if (foundTriangle) {
|
||
res = tmpRes;
|
||
res.x0_plane = res.x10_surface->GetPlane();
|
||
}
|
||
} else if (x20_nodeType == ETreeType::Branch) {
|
||
if (GetChildFlags() == 0xA) // 2 leaves
|
||
{
|
||
std::array<SRayResult, 2> tmpRes;
|
||
for (int i = 0; i < 2; ++i) {
|
||
Node child = GetChild(i);
|
||
float tf1 = lT;
|
||
float tf2 = hT;
|
||
if (BoxLineTest(child.GetBoundingBox(), line, tf1, tf2))
|
||
child.LineTestExInternal(line, filter, tmpRes[i], tf1, tf2, maxT, dirRecip);
|
||
}
|
||
|
||
if (!tmpRes[0].x10_surface && !tmpRes[1].x10_surface) {
|
||
res = SRayResult();
|
||
} else if (tmpRes[0].x10_surface && tmpRes[1].x10_surface) {
|
||
if (tmpRes[0].x3c_t < tmpRes[1].x3c_t)
|
||
res = tmpRes[0];
|
||
else
|
||
res = tmpRes[1];
|
||
} else if (tmpRes[0].x10_surface) {
|
||
res = tmpRes[0];
|
||
} else {
|
||
res = tmpRes[1];
|
||
}
|
||
|
||
if (res.x3c_t > highT)
|
||
res = SRayResult();
|
||
|
||
return;
|
||
}
|
||
|
||
zeus::CVector3f center = x0_aabb.center(); // r26
|
||
|
||
zeus::CVector3f lowPoint = line.origin + lT * line.dir;
|
||
zeus::CVector3f highPoint = line.origin + hT * line.dir;
|
||
std::array<int, 4> comps{-1, -1, -1, 0};
|
||
std::array<float, 3> compT;
|
||
|
||
int numComps = 0;
|
||
for (size_t i = 0; i < compT.size(); ++i) {
|
||
if (lowPoint[i] >= center[i] || highPoint[i] <= center[i]) {
|
||
if (highPoint[i] >= center[i] || lowPoint[i] <= center[i]) {
|
||
continue;
|
||
}
|
||
}
|
||
if (_close_enough(line.dir[i], 0.f, 0.000099999997f)) {
|
||
continue;
|
||
}
|
||
comps[numComps++] = static_cast<int>(i);
|
||
compT[i] = dirRecip[i] * (center[i] - line.origin[i]);
|
||
}
|
||
|
||
// Sort componentT least to greatest
|
||
switch (numComps) {
|
||
default:
|
||
return;
|
||
case 0:
|
||
case 1:
|
||
break;
|
||
case 2:
|
||
if (compT[comps[1]] < compT[comps[0]])
|
||
std::swap(comps[1], comps[0]);
|
||
break;
|
||
case 3:
|
||
if (compT[0] < compT[1]) {
|
||
if (compT[0] >= compT[2]) {
|
||
comps[0] = 2;
|
||
comps[1] = 0;
|
||
comps[2] = 1;
|
||
} else if (compT[1] < compT[2]) {
|
||
comps[0] = 0;
|
||
comps[1] = 1;
|
||
comps[2] = 2;
|
||
} else {
|
||
comps[0] = 0;
|
||
comps[1] = 2;
|
||
comps[2] = 1;
|
||
}
|
||
} else {
|
||
if (compT[1] >= compT[2]) {
|
||
comps[0] = 2;
|
||
comps[1] = 1;
|
||
comps[2] = 0;
|
||
} else if (compT[0] < compT[2]) {
|
||
comps[0] = 1;
|
||
comps[1] = 0;
|
||
comps[2] = 2;
|
||
} else {
|
||
comps[0] = 1;
|
||
comps[1] = 2;
|
||
comps[2] = 0;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
zeus::CVector3f lineStart = line.origin + (lT * line.dir);
|
||
int selector = 0;
|
||
if (lineStart.x() >= center.x())
|
||
selector = 1;
|
||
if (lineStart.y() >= center.y())
|
||
selector |= 1 << 1;
|
||
if (lineStart.z() >= center.z())
|
||
selector |= 1 << 2;
|
||
|
||
float tmpLoT = lT;
|
||
for (int i = -1; i < numComps; ++i) {
|
||
if (i >= 0)
|
||
selector ^= 1 << comps[i];
|
||
float tmpHiT = (i < numComps - 1) ? compT[comps[i + 1]] : hT;
|
||
if (tmpHiT > lowT && tmpLoT <= tmpHiT) {
|
||
Node child = GetChild(selector);
|
||
if (child.x20_nodeType != ETreeType::Invalid)
|
||
child.LineTestExInternal(line, filter, res, tmpLoT, tmpHiT, maxT, dirRecip);
|
||
if (res.x10_surface) {
|
||
if (res.x3c_t > highT)
|
||
res = SRayResult();
|
||
break;
|
||
}
|
||
}
|
||
tmpLoT = tmpHiT;
|
||
}
|
||
}
|
||
}
|
||
|
||
bool CAreaOctTree::Node::LineTest(const zeus::CLine& line, const CMaterialFilter& filter, float length) const {
|
||
if (x20_nodeType == ETreeType::Invalid)
|
||
return true;
|
||
|
||
float f1 = 0.f;
|
||
float f2 = 0.f;
|
||
if (!BoxLineTest(x0_aabb, line, f1, f2))
|
||
return true;
|
||
|
||
zeus::CVector3f recip = 1.f / line.dir;
|
||
return LineTestInternal(line, filter, f1 - 0.000099999997f, f2 + 0.000099999997f, length, recip);
|
||
}
|
||
|
||
void CAreaOctTree::Node::LineTestEx(const zeus::CLine& line, const CMaterialFilter& filter, SRayResult& res,
|
||
float length) const {
|
||
if (x20_nodeType == ETreeType::Invalid)
|
||
return;
|
||
|
||
float lT = 0.f;
|
||
float hT = 0.f;
|
||
if (!BoxLineTest(x0_aabb, line, lT, hT))
|
||
return;
|
||
|
||
zeus::CVector3f recip = 1.f / line.dir;
|
||
LineTestExInternal(line, filter, res, lT - 0.000099999997f, hT + 0.000099999997f, length, recip);
|
||
}
|
||
|
||
CAreaOctTree::Node CAreaOctTree::Node::GetChild(int idx) const {
|
||
u16 flags = *reinterpret_cast<const u16*>(x18_ptr);
|
||
const u32* offsets = reinterpret_cast<const u32*>(x18_ptr + 4);
|
||
ETreeType type = ETreeType((flags >> (2 * idx)) & 0x3);
|
||
|
||
if (type == ETreeType::Branch) {
|
||
zeus::CAABox pos, neg, res;
|
||
x0_aabb.splitZ(neg, pos);
|
||
if (idx & 4) {
|
||
zeus::CAABox(pos).splitY(neg, pos);
|
||
if (idx & 2) {
|
||
zeus::CAABox(pos).splitX(neg, pos);
|
||
if (idx & 1)
|
||
res = pos;
|
||
else
|
||
res = neg;
|
||
} else {
|
||
zeus::CAABox(neg).splitX(neg, pos);
|
||
if (idx & 1)
|
||
res = pos;
|
||
else
|
||
res = neg;
|
||
}
|
||
} else {
|
||
zeus::CAABox(neg).splitY(neg, pos);
|
||
if (idx & 2) {
|
||
zeus::CAABox(pos).splitX(neg, pos);
|
||
if (idx & 1)
|
||
res = pos;
|
||
else
|
||
res = neg;
|
||
} else {
|
||
zeus::CAABox(neg).splitX(neg, pos);
|
||
if (idx & 1)
|
||
res = pos;
|
||
else
|
||
res = neg;
|
||
}
|
||
}
|
||
|
||
return Node(x18_ptr + offsets[idx] + 36, res, x1c_owner, ETreeType::Branch);
|
||
} else if (type == ETreeType::Leaf) {
|
||
const float* aabb = reinterpret_cast<const float*>(x18_ptr + offsets[idx] + 36);
|
||
zeus::CAABox aabbObj(aabb[0], aabb[1], aabb[2], aabb[3], aabb[4], aabb[5]);
|
||
return Node(aabb, aabbObj, x1c_owner, ETreeType::Leaf);
|
||
} else {
|
||
return Node(nullptr, zeus::skNullBox, x1c_owner, ETreeType::Invalid);
|
||
}
|
||
}
|
||
|
||
void CAreaOctTree::SwapTreeNode(u8* ptr, Node::ETreeType type) {
|
||
if (type == Node::ETreeType::Branch) {
|
||
u16* typeBits = reinterpret_cast<u16*>(ptr);
|
||
*typeBits = hecl::SBig(*typeBits);
|
||
u32* offsets = reinterpret_cast<u32*>(ptr + 4);
|
||
|
||
for (int i = 0; i < 8; ++i) {
|
||
Node::ETreeType ctype = Node::ETreeType((*typeBits >> (2 * i)) & 0x3);
|
||
offsets[i] = hecl::SBig(offsets[i]);
|
||
SwapTreeNode(ptr + offsets[i] + 36, ctype);
|
||
}
|
||
} else if (type == Node::ETreeType::Leaf) {
|
||
float* aabb = reinterpret_cast<float*>(ptr);
|
||
aabb[0] = hecl::SBig(aabb[0]);
|
||
aabb[1] = hecl::SBig(aabb[1]);
|
||
aabb[2] = hecl::SBig(aabb[2]);
|
||
aabb[3] = hecl::SBig(aabb[3]);
|
||
aabb[4] = hecl::SBig(aabb[4]);
|
||
aabb[5] = hecl::SBig(aabb[5]);
|
||
|
||
u16* countIdxs = reinterpret_cast<u16*>(ptr + 24);
|
||
*countIdxs = hecl::SBig(*countIdxs);
|
||
for (u16 i = 0; i < *countIdxs; ++i)
|
||
countIdxs[i + 1] = hecl::SBig(countIdxs[i + 1]);
|
||
}
|
||
}
|
||
|
||
CAreaOctTree::CAreaOctTree(const zeus::CAABox& aabb, Node::ETreeType treeType, const u8* buf, const u8* treeBuf,
|
||
u32 matCount, const u32* materials, const u8* vertMats, const u8* edgeMats,
|
||
const u8* polyMats, u32 edgeCount, const CCollisionEdge* edges, u32 polyCount,
|
||
const u16* polyEdges, u32 vertCount, const float* verts)
|
||
: x0_aabb(aabb)
|
||
, x18_treeType(treeType)
|
||
, x1c_buf(buf)
|
||
, x20_treeBuf(treeBuf)
|
||
, x24_matCount(matCount)
|
||
, x28_materials(materials)
|
||
, x2c_vertMats(vertMats)
|
||
, x30_edgeMats(edgeMats)
|
||
, x34_polyMats(polyMats)
|
||
, x38_edgeCount(edgeCount)
|
||
, x3c_edges(edges)
|
||
, x40_polyCount(polyCount)
|
||
, x44_polyEdges(polyEdges)
|
||
, x48_vertCount(vertCount)
|
||
, x4c_verts(verts) {
|
||
SwapTreeNode(const_cast<u8*>(x20_treeBuf), treeType);
|
||
|
||
for (u32 i = 0; i < matCount; ++i)
|
||
const_cast<u32*>(x28_materials)[i] = hecl::SBig(x28_materials[i]);
|
||
|
||
for (u32 i = 0; i < edgeCount; ++i)
|
||
const_cast<CCollisionEdge*>(x3c_edges)[i].swapBig();
|
||
|
||
for (u32 i = 0; i < polyCount; ++i)
|
||
const_cast<u16*>(x44_polyEdges)[i] = hecl::SBig(x44_polyEdges[i]);
|
||
|
||
for (u32 i = 0; i < vertCount * 3; ++i)
|
||
const_cast<float*>(x4c_verts)[i] = hecl::SBig(x4c_verts[i]);
|
||
}
|
||
|
||
std::unique_ptr<CAreaOctTree> CAreaOctTree::MakeFromMemory(const u8* buf, unsigned int size) {
|
||
athena::io::MemoryReader r(buf + 8, size - 8);
|
||
r.readUint32Big();
|
||
r.readUint32Big();
|
||
zeus::CAABox aabb;
|
||
aabb.readBoundingBoxBig(r);
|
||
Node::ETreeType nodeType = Node::ETreeType(r.readUint32Big());
|
||
u32 treeSize = r.readUint32Big();
|
||
const u8* cur = reinterpret_cast<const u8*>(buf) + 8 + r.position();
|
||
|
||
const u8* treeBuf = cur;
|
||
cur += treeSize;
|
||
|
||
u32 matCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
|
||
cur += 4;
|
||
const u32* matBuf = reinterpret_cast<const u32*>(cur);
|
||
cur += 4 * matCount;
|
||
|
||
u32 vertMatsCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
|
||
cur += 4;
|
||
const u8* vertMatsBuf = cur;
|
||
cur += vertMatsCount;
|
||
|
||
u32 edgeMatsCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
|
||
cur += 4;
|
||
const u8* edgeMatsBuf = cur;
|
||
cur += edgeMatsCount;
|
||
|
||
u32 polyMatsCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
|
||
cur += 4;
|
||
const u8* polyMatsBuf = cur;
|
||
cur += polyMatsCount;
|
||
|
||
u32 edgeCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
|
||
cur += 4;
|
||
const CCollisionEdge* edgeBuf = reinterpret_cast<const CCollisionEdge*>(cur);
|
||
cur += edgeCount * sizeof(edgeCount);
|
||
|
||
u32 polyCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
|
||
cur += 4;
|
||
const u16* polyBuf = reinterpret_cast<const u16*>(cur);
|
||
cur += polyCount * 2;
|
||
|
||
u32 vertCount = hecl::SBig(*reinterpret_cast<const u32*>(cur));
|
||
cur += 4;
|
||
const float* vertBuf = reinterpret_cast<const float*>(cur);
|
||
|
||
return std::make_unique<CAreaOctTree>(aabb, nodeType, reinterpret_cast<const u8*>(buf + 8), treeBuf, matCount, matBuf,
|
||
vertMatsBuf, edgeMatsBuf, polyMatsBuf, edgeCount, edgeBuf, polyCount, polyBuf,
|
||
vertCount, vertBuf);
|
||
}
|
||
|
||
CCollisionSurface CAreaOctTree::GetMasterListTriangle(u16 idx) const {
|
||
const CCollisionEdge& e0 = x3c_edges[x44_polyEdges[idx * 3]];
|
||
const CCollisionEdge& e1 = x3c_edges[x44_polyEdges[idx * 3 + 1]];
|
||
u16 vert2 = e1.GetVertIndex2();
|
||
if (e1.GetVertIndex1() != e0.GetVertIndex1())
|
||
if (e1.GetVertIndex1() != e0.GetVertIndex2())
|
||
vert2 = e1.GetVertIndex1();
|
||
|
||
u32 material = x28_materials[x34_polyMats[idx]];
|
||
if (material & 0x2000000)
|
||
return CCollisionSurface(GetVert(e0.GetVertIndex2()), GetVert(e0.GetVertIndex1()), GetVert(vert2), material);
|
||
else
|
||
return CCollisionSurface(GetVert(e0.GetVertIndex1()), GetVert(e0.GetVertIndex2()), GetVert(vert2), material);
|
||
}
|
||
|
||
void CAreaOctTree::GetTriangleVertexIndices(u16 idx, u16 indicesOut[3]) const {
|
||
const CCollisionEdge& e0 = x3c_edges[x44_polyEdges[idx * 3]];
|
||
const CCollisionEdge& e1 = x3c_edges[x44_polyEdges[idx * 3 + 1]];
|
||
indicesOut[2] = (e1.GetVertIndex1() != e0.GetVertIndex1() && e1.GetVertIndex1() != e0.GetVertIndex2())
|
||
? e1.GetVertIndex1()
|
||
: e1.GetVertIndex2();
|
||
|
||
u32 material = x28_materials[x34_polyMats[idx]];
|
||
if (material & 0x2000000) {
|
||
indicesOut[0] = e0.GetVertIndex2();
|
||
indicesOut[1] = e0.GetVertIndex1();
|
||
} else {
|
||
indicesOut[0] = e0.GetVertIndex1();
|
||
indicesOut[1] = e0.GetVertIndex2();
|
||
}
|
||
}
|
||
|
||
} // namespace metaforce
|