metaforce/DataSpec/DNAMP1/MREA.cpp

846 lines
30 KiB
C++

#include "hecl/ClientProcess.hpp"
#include "athena/MemoryReader.hpp"
#include "MREA.hpp"
#include "SCLY.hpp"
#include "PATH.hpp"
#include "DeafBabe.hpp"
#include "DataSpec/DNACommon/BabeDead.hpp"
#include "zeus/Math.hpp"
#include "zeus/CAABox.hpp"
#include "DataSpec/DNACommon/AROTBuilder.hpp"
#include "ScriptObjects/ScriptTypes.hpp"
#include "hecl/Blender/Connection.hpp"
#define DUMP_OCTREE 0
extern hecl::SystemString ExeDir;
namespace DataSpec::DNAMP1
{
void MREA::ReadBabeDeadToBlender_1_2(hecl::blender::PyOutStream& os,
athena::io::IStreamReader& rs)
{
atUint32 bdMagic = rs.readUint32Big();
if (bdMagic != 0xBABEDEAD)
Log.report(logvisor::Fatal, "invalid BABEDEAD magic");
os << "bpy.context.scene.render.engine = 'CYCLES'\n"
"bpy.context.scene.world.use_nodes = True\n"
"bpy.context.scene.render.engine = 'BLENDER_GAME'\n"
"bg_node = bpy.context.scene.world.node_tree.nodes['Background']\n"
"bg_node.inputs[1].default_value = 0.0\n";
for (atUint32 s=0 ; s<2 ; ++s)
{
atUint32 lightCount = rs.readUint32Big();
for (atUint32 l=0 ; l<lightCount ; ++l)
{
BabeDeadLight light;
light.read(rs);
ReadBabeDeadLightToBlender(os, light, s, l);
}
}
}
void MREA::AddCMDLRigPairs(PAKEntryReadStream& rs,
PAKRouter<PAKBridge>& pakRouter, CharacterAssociations<UniqueID32>& charAssoc)
{
/* Do extract */
Header head;
head.read(rs);
rs.seekAlign32();
/* Skip to SCLY */
atUint32 curSec = 0;
atUint64 secStart = rs.position();
while (curSec != head.sclySecIdx)
secStart += head.secSizes[curSec++];
rs.seek(secStart, athena::Begin);
SCLY scly;
scly.read(rs);
scly.addCMDLRigPairs(pakRouter, charAssoc);
}
UniqueID32 MREA::GetPATHId(PAKEntryReadStream& rs)
{
/* Do extract */
Header head;
head.read(rs);
rs.seekAlign32();
/* Skip to PATH */
atUint32 curSec = 0;
atUint64 secStart = rs.position();
while (curSec != head.pathSecIdx)
secStart += head.secSizes[curSec++];
if (!head.secSizes[curSec])
return {};
rs.seek(secStart, athena::Begin);
return {rs};
}
#if DUMP_OCTREE
/* Collision octree dumper */
static void OutputOctreeNode(hecl::blender::PyOutStream& os, athena::io::MemoryReader& r,
BspNodeType type, const zeus::CAABox& aabb)
{
if (type == BspNodeType::Branch)
{
u16 flags = r.readUint16Big();
r.readUint16Big();
u32 offsets[8];
for (int i=0 ; i<8 ; ++i)
offsets[i] = r.readUint32Big();
u32 dataStart = r.position();
for (int i=0 ; i<8 ; ++i)
{
r.seek(dataStart + offsets[i], athena::Begin);
int chFlags = (flags >> (i * 2)) & 0x3;
zeus::CAABox pos, neg, res;
aabb.splitZ(neg, pos);
if (i & 4)
{
zeus::CAABox(pos).splitY(neg, pos);
if (i & 2)
{
zeus::CAABox(pos).splitX(neg, pos);
if (i & 1)
res = pos;
else
res = neg;
}
else
{
zeus::CAABox(neg).splitX(neg, pos);
if (i & 1)
res = pos;
else
res = neg;
}
}
else
{
zeus::CAABox(neg).splitY(neg, pos);
if (i & 2)
{
zeus::CAABox(pos).splitX(neg, pos);
if (i & 1)
res = pos;
else
res = neg;
}
else
{
zeus::CAABox(neg).splitX(neg, pos);
if (i & 1)
res = pos;
else
res = neg;
}
}
OutputOctreeNode(os, r, BspNodeType(chFlags), res);
}
}
else if (type == BspNodeType::Leaf)
{
zeus::CVector3f pos = aabb.center();
zeus::CVector3f extent = aabb.extents();
os.format("obj = bpy.data.objects.new('Leaf', None)\n"
"bpy.context.scene.objects.link(obj)\n"
"obj.location = (%f,%f,%f)\n"
"obj.scale = (%f,%f,%f)\n"
"obj.empty_draw_type = 'CUBE'\n"
"obj.layers[1] = True\n"
"obj.layers[0] = False\n",
pos.x, pos.y, pos.z, extent.x, extent.y, extent.z);
}
}
static const uint32_t AROTChildCounts[] = { 0, 2, 2, 4, 2, 4, 4, 8 };
/* AROT octree dumper */
static void OutputOctreeNode(hecl::blender::PyOutStream& os, athena::io::MemoryReader& r,
const zeus::CAABox& aabb)
{
r.readUint16Big();
u16 flags = r.readUint16Big();
if (flags)
{
u32 childCount = AROTChildCounts[flags];
r.seek(2 * childCount);
zeus::CAABox Z[2] = {aabb};
if ((flags & 0x1) != 0)
aabb.splitZ(Z[0], Z[1]);
for (int k=0 ; k < 1 + ((flags & 0x1) != 0) ; ++k)
{
zeus::CAABox Y[2] = {Z[0]};
if ((flags & 0x2) != 0)
Z[k].splitY(Y[0], Y[1]);
for (int j=0 ; j < 1 + ((flags & 0x2) != 0) ; ++j)
{
zeus::CAABox X[2] = {Y[0]};
if ((flags & 0x4) != 0)
Y[j].splitX(X[0], X[1]);
for (int i=0 ; i < 1 + ((flags & 0x4) != 0) ; ++i)
{
OutputOctreeNode(os, r, X[i]);
}
}
}
}
else
{
zeus::CVector3f pos = aabb.center();
zeus::CVector3f extent = aabb.extents();
os.format("obj = bpy.data.objects.new('Leaf', None)\n"
"bpy.context.scene.objects.link(obj)\n"
"obj.location = (%f,%f,%f)\n"
"obj.scale = (%f,%f,%f)\n"
"obj.empty_draw_type = 'CUBE'\n"
"obj.layers[1] = True\n"
"obj.layers[0] = False\n",
pos.x, pos.y, pos.z, extent.x, extent.y, extent.z);
}
}
#endif
bool MREA::Extract(const SpecBase& dataSpec,
PAKEntryReadStream& rs,
const hecl::ProjectPath& outPath,
PAKRouter<PAKBridge>& pakRouter,
const PAK::Entry& entry,
bool force,
hecl::blender::Token& btok,
std::function<void(const hecl::SystemChar*)>)
{
using RigPair = std::pair<CSKR*, CINF*>;
RigPair dummy(nullptr, nullptr);
if (!force && outPath.isFile())
return true;
/* Do extract */
Header head;
head.read(rs);
rs.seekAlign32();
hecl::blender::Connection& conn = btok.getBlenderConnection();
if (!conn.createBlend(outPath, hecl::blender::BlendType::Area))
return false;
/* Open Py Stream and read sections */
hecl::blender::PyOutStream os = conn.beginPythonOut(true);
os.format("import bpy\n"
"import bmesh\n"
"from mathutils import Vector\n"
"\n"
"bpy.context.scene.name = '%s'\n",
pakRouter.getBestEntryName(entry, false).c_str());
DNACMDL::InitGeomBlenderContext(os, dataSpec.getMasterShaderPath(), true);
MaterialSet::RegisterMaterialProps(os);
os << "# Clear Scene\n"
"for ob in bpy.data.objects:\n"
" if ob.type != 'CAMERA':\n"
" bpy.context.scene.objects.unlink(ob)\n"
" bpy.data.objects.remove(ob)\n"
"bpy.types.Lamp.retro_layer = bpy.props.IntProperty(name='Retro: Light Layer')\n"
"bpy.types.Lamp.retro_origtype = bpy.props.IntProperty(name='Retro: Original Type')\n"
"bpy.types.Object.retro_disable_enviro_visor = bpy.props.BoolProperty(name='Retro: Disable in Combat/Scan Visor')\n"
"bpy.types.Object.retro_disable_thermal_visor = bpy.props.BoolProperty(name='Retro: Disable in Thermal Visor')\n"
"bpy.types.Object.retro_disable_xray_visor = bpy.props.BoolProperty(name='Retro: Disable in X-Ray Visor')\n"
"bpy.types.Object.retro_thermal_level = bpy.props.EnumProperty(items=[('COOL', 'Cool', 'Cool Temperature'),"
"('HOT', 'Hot', 'Hot Temperature'),"
"('WARM', 'Warm', 'Warm Temperature')],"
"name='Retro: Thermal Visor Level')\n"
"\n";
/* One shared material set for all meshes */
os << "# Materials\n"
"materials = []\n"
"\n";
MaterialSet matSet;
atUint64 secStart = rs.position();
matSet.read(rs);
matSet.readToBlender(os, pakRouter, entry, 0);
rs.seek(secStart + head.secSizes[0], athena::Begin);
std::vector<DNACMDL::VertexAttributes> vertAttribs;
DNACMDL::GetVertexAttributes(matSet, vertAttribs);
/* Read meshes */
atUint32 curSec = 1;
for (atUint32 m=0 ; m<head.meshCount ; ++m)
{
MeshHeader mHeader;
secStart = rs.position();
mHeader.read(rs);
rs.seek(secStart + head.secSizes[curSec++], athena::Begin);
curSec += DNACMDL::ReadGeomSectionsToBlender<PAKRouter<PAKBridge>, MaterialSet, RigPair, DNACMDL::SurfaceHeader_1>
(os, rs, pakRouter, entry, dummy, true,
true, vertAttribs, m, head.secCount, 0, &head.secSizes[curSec]);
os.format("obj.retro_disable_enviro_visor = %s\n"
"obj.retro_disable_thermal_visor = %s\n"
"obj.retro_disable_xray_visor = %s\n"
"obj.retro_thermal_level = '%s'\n",
mHeader.visorFlags.disableEnviro() ? "True" : "False",
mHeader.visorFlags.disableThermal() ? "True" : "False",
mHeader.visorFlags.disableXray() ? "True" : "False",
mHeader.visorFlags.thermalLevelStr());
}
/* Skip AROT */
secStart = rs.position();
rs.seek(secStart + head.secSizes[curSec++], athena::Begin);
/* Read SCLY layers */
secStart = rs.position();
SCLY scly;
scly.read(rs);
scly.exportToLayerDirectories(entry, pakRouter, force);
rs.seek(secStart + head.secSizes[curSec++], athena::Begin);
/* Read collision meshes */
DeafBabe collision;
secStart = rs.position();
collision.read(rs);
DeafBabe::BlenderInit(os);
collision.sendToBlender(os);
rs.seek(secStart + head.secSizes[curSec++], athena::Begin);
/* Skip unknown section */
rs.seek(head.secSizes[curSec++], athena::Current);
/* Read BABEDEAD Lights as Cycles emissives */
secStart = rs.position();
ReadBabeDeadToBlender_1_2(os, rs);
rs.seek(secStart + head.secSizes[curSec++], athena::Begin);
/* Dump VISI entities */
secStart = rs.position();
if (head.secSizes[curSec] && rs.readUint32Big() == 'VISI')
{
{
rs.seek(secStart, athena::Begin);
auto visiData = rs.readUBytes(head.secSizes[curSec]);
athena::io::FileWriter visiOut(outPath.getWithExtension(_SYS_STR(".visi"), true).getAbsolutePath());
visiOut.writeUBytes(visiData.get(), head.secSizes[curSec]);
rs.seek(secStart + 4, athena::Begin);
}
athena::io::YAMLDocWriter visiWriter("VISI");
if (auto __vec = visiWriter.enterSubVector("entities"))
{
rs.seek(18, athena::Current);
uint32_t entityCount = rs.readUint32Big();
rs.seek(8, athena::Current);
for (int i=0 ; i<entityCount ; ++i)
{
uint32_t entityId = rs.readUint32Big();
visiWriter.writeUint32(nullptr, entityId);
}
}
hecl::ProjectPath visiMetadataPath(outPath.getParentPath(), _SYS_STR("!visi.yaml"));
athena::io::FileWriter visiMetadata(visiMetadataPath.getAbsolutePath());
visiWriter.finish(&visiMetadata);
}
/* Origins to center of mass */
os << "bpy.context.scene.layers[1] = True\n"
"bpy.ops.object.select_by_type(type='MESH')\n"
"bpy.ops.object.origin_set(type='ORIGIN_CENTER_OF_MASS')\n"
"bpy.ops.object.select_all(action='DESELECT')\n"
"bpy.context.scene.layers[1] = False\n";
/* Link MLVL scene as background */
os.linkBackground("//../!world.blend", "World");
os.centerView();
os.close();
return conn.saveBlend();
}
void MREA::Name(const SpecBase& dataSpec,
PAKEntryReadStream& rs,
PAKRouter<PAKBridge>& pakRouter,
PAK::Entry& entry)
{
/* Do extract */
Header head;
head.read(rs);
rs.seekAlign32();
/* One shared material set for all meshes */
atUint64 secStart = rs.position();
MaterialSet matSet;
matSet.read(rs);
matSet.nameTextures(pakRouter, hecl::Format("MREA_%s", entry.id.toString().c_str()).c_str(), -1);
rs.seek(secStart + head.secSizes[0], athena::Begin);
/* Skip to SCLY */
atUint32 curSec = 1;
secStart = rs.position();
while (curSec != head.sclySecIdx)
secStart += head.secSizes[curSec++];
rs.seek(secStart, athena::Begin);
SCLY scly;
scly.read(rs);
scly.nameIDs(pakRouter);
/* Skip to PATH */
while (curSec != head.pathSecIdx)
secStart += head.secSizes[curSec++];
rs.seek(secStart, athena::Begin);
UniqueID32 pathID(rs);
const nod::Node* node;
PAK::Entry* pathEnt = (PAK::Entry*)pakRouter.lookupEntry(pathID, &node);
pathEnt->name = entry.name + "_path";
}
void MREA::MeshHeader::VisorFlags::setFromBlenderProps(const std::unordered_map<std::string, std::string>& props)
{
auto search = props.find("retro_disable_enviro_visor");
if (search != props.cend() && !search->second.compare("True"))
setDisableEnviro(true);
search = props.find("retro_disable_thermal_visor");
if (search != props.cend() && !search->second.compare("True"))
setDisableThermal(true);
search = props.find("retro_disable_xray_visor");
if (search != props.cend() && !search->second.compare("True"))
setDisableXray(true);
search = props.find("retro_thermal_level");
if (search != props.cend())
{
if (!search->second.compare("COOL"))
setThermalLevel(ThermalLevel::Cool);
else if (!search->second.compare("HOT"))
setThermalLevel(ThermalLevel::Hot);
else if (!search->second.compare("WARM"))
setThermalLevel(ThermalLevel::Warm);
}
}
bool MREA::Cook(const hecl::ProjectPath& outPath,
const hecl::ProjectPath& inPath,
const std::vector<DNACMDL::Mesh>& meshes,
const ColMesh& cMesh,
const std::vector<Light>& lights,
hecl::blender::Token& btok,
const hecl::blender::Matrix4f* xf,
bool pc)
{
/* Discover area layers */
hecl::ProjectPath areaDirPath = inPath.getParentPath();
std::vector<hecl::ProjectPath> layerScriptPaths;
{
hecl::DirectoryEnumerator dEnum(inPath.getParentPath().getAbsolutePath(),
hecl::DirectoryEnumerator::Mode::DirsSorted,
false, false, true);
for (const hecl::DirectoryEnumerator::Entry& ent : dEnum)
{
hecl::ProjectPath layerScriptPath(areaDirPath, ent.m_name + _SYS_STR("/!objects.yaml"));
if (layerScriptPath.isFile())
layerScriptPaths.push_back(std::move(layerScriptPath));
}
}
size_t secCount = 1 + meshes.size() * (pc ? 5 : 7); /* (materials, 5/7 fixed model secs) */
/* tally up surfaces */
for (const DNACMDL::Mesh& mesh : meshes)
secCount += mesh.surfaces.size();
/* Header */
Header head = {};
head.magic = 0xDEADBEEF;
head.version = pc ? 0x1000F : 0xF;
if (xf)
{
head.localToWorldMtx[0] = xf->val[0];
head.localToWorldMtx[1] = xf->val[1];
head.localToWorldMtx[2] = xf->val[2];
}
else
{
head.localToWorldMtx[0].vec[0] = 1.f;
head.localToWorldMtx[1].vec[1] = 1.f;
head.localToWorldMtx[2].vec[2] = 1.f;
}
head.meshCount = meshes.size();
head.geomSecIdx = 0;
head.arotSecIdx = secCount++;
head.sclySecIdx = secCount++;
head.collisionSecIdx = secCount++;
head.unkSecIdx = secCount++;
head.lightSecIdx = secCount++;
head.visiSecIdx = secCount++;
head.pathSecIdx = secCount++;
head.secCount = secCount;
std::vector<std::vector<uint8_t>> secs;
secs.reserve(secCount + 2);
/* Header section */
{
size_t secSz = 0;
head.binarySize(secSz);
secs.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secs.back().data(), secs.back().size());
head.write(w);
int i = w.position();
int end = ROUND_UP_32(i);
for (; i<end ; ++i)
w.writeByte(0);
}
/* Sizes section */
secs.emplace_back();
/* Pre-emptively build full AABB and mesh AABBs in world coords */
zeus::CAABox fullAabb;
std::vector<zeus::CAABox> meshAabbs;
meshAabbs.reserve(meshes.size());
/* Models */
if (pc)
{
if (!DNACMDL::WriteHMDLMREASecs<HMDLMaterialSet, DNACMDL::SurfaceHeader_2, MeshHeader>
(secs, inPath, meshes, fullAabb, meshAabbs))
return false;
}
else
{
if (!DNACMDL::WriteMREASecs<MaterialSet, DNACMDL::SurfaceHeader_1, MeshHeader>
(secs, inPath, meshes, fullAabb, meshAabbs))
return false;
}
/* AROT */
{
AROTBuilder arotBuilder;
arotBuilder.build(secs, fullAabb, meshAabbs, meshes);
#if DUMP_OCTREE
hecl::blender::Connection& conn = btok.getBlenderConnection();
if (!conn.createBlend(inPath.getWithExtension(_SYS_STR(".octree.blend"), true), hecl::blender::BlendType::Area))
return false;
/* Open Py Stream and read sections */
hecl::blender::PyOutStream os = conn.beginPythonOut(true);
os.format("import bpy\n"
"import bmesh\n"
"from mathutils import Vector\n"
"\n"
"bpy.context.scene.name = '%s'\n",
inPath.getLastComponentUTF8().data());
athena::io::MemoryReader reader(secs.back().data(), secs.back().size());
reader.readUint32Big();
reader.readUint32Big();
u32 numMeshBitmaps = reader.readUint32Big();
u32 meshBitCount = reader.readUint32Big();
u32 numNodes = reader.readUint32Big();
auto aabbMin = reader.readVec3fBig();
auto aabbMax = reader.readVec3fBig();
reader.seekAlign32();
reader.seek(ROUND_UP_32(meshBitCount) / 8 * numMeshBitmaps + numNodes * 4);
zeus::CAABox arotAABB(aabbMin, aabbMax);
OutputOctreeNode(os, reader, arotAABB);
os.centerView();
os.close();
conn.saveBlend();
#endif
}
/* SCLY */
DNAMP1::SCLY sclyData = {};
{
sclyData.fourCC = 'SCLY';
sclyData.version = 1;
for (const hecl::ProjectPath& layer : layerScriptPaths)
{
athena::io::FileReader freader(layer.getAbsolutePath());
if (!freader.isOpen())
continue;
if (!athena::io::ValidateFromYAMLStream<DNAMP1::SCLY::ScriptLayer>(freader))
continue;
athena::io::YAMLDocReader reader;
if (!reader.parse(&freader))
continue;
sclyData.layers.emplace_back();
sclyData.layers.back().read(reader);
size_t layerSize = 0;
sclyData.layers.back().binarySize(layerSize);
sclyData.layerSizes.push_back(layerSize);
}
sclyData.layerCount = sclyData.layers.size();
size_t secSz = 0;
sclyData.binarySize(secSz);
secs.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secs.back().data(), secs.back().size());
sclyData.write(w);
}
/* Collision */
{
DeafBabe collision = {};
DeafBabeBuildFromBlender(collision, cMesh);
#if DUMP_OCTREE
hecl::blender::Connection& conn = btok.getBlenderConnection();
if (!conn.createBlend(inPath.getWithExtension(_SYS_STR(".coctree.blend"), true), hecl::blender::BlendType::Area))
return false;
/* Open Py Stream and read sections */
hecl::blender::PyOutStream os = conn.beginPythonOut(true);
os.format("import bpy\n"
"import bmesh\n"
"from mathutils import Vector\n"
"\n"
"bpy.context.scene.name = '%s'\n",
inPath.getLastComponentUTF8().data());
athena::io::MemoryReader reader(collision.bspTree.get(), collision.bspSize);
zeus::CAABox colAABB(collision.aabb[0], collision.aabb[1]);
OutputOctreeNode(os, reader, collision.rootNodeType, colAABB);
os.centerView();
os.close();
conn.saveBlend();
#endif
size_t secSz = 0;
collision.binarySize(secSz);
secs.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secs.back().data(), secs.back().size());
collision.write(w);
}
/* Unk */
{
secs.emplace_back(8, 0);
athena::io::MemoryWriter w(secs.back().data(), secs.back().size());
w.writeUint32Big(1);
}
/* Lights */
std::vector<atVec3f> lightsVisi[2];
{
int actualCounts[2] = {};
for (const Light& l : lights)
if (l.layer == 0 || l.layer == 1)
++actualCounts[l.layer];
lightsVisi[0].reserve(actualCounts[0]);
lightsVisi[1].reserve(actualCounts[1]);
secs.emplace_back(12 + 65 * (actualCounts[0] + actualCounts[1]), 0);
athena::io::MemoryWriter w(secs.back().data(), secs.back().size());
w.writeUint32Big(0xBABEDEAD);
for (int lay=0 ; lay<2 ; ++lay)
{
int lightCount = 0;
for (const Light& l : lights)
{
if (l.layer == lay)
++lightCount;
}
w.writeUint32Big(lightCount);
for (const Light& l : lights)
{
if (l.layer == lay)
{
BabeDeadLight light = {};
WriteBabeDeadLightFromBlender(light, l);
light.write(w);
lightsVisi[l.layer].push_back(light.position);
}
}
}
}
/* VISI */
hecl::ProjectPath visiMetadataPath(areaDirPath, _SYS_STR("!visi.yaml"));
bool visiGood = false;
if (visiMetadataPath.isFile())
{
athena::io::FileReader visiReader(visiMetadataPath.getAbsolutePath());
athena::io::YAMLDocReader r;
if (r.parse(&visiReader))
{
size_t entityCount;
std::vector<std::pair<uint16_t, zeus::CAABox>> entities;
if (auto __vec = r.enterSubVector("entities", entityCount))
{
entities.reserve(entityCount);
for (size_t i=0 ; i<entityCount ; ++i)
{
uint32_t entityId = r.readUint32(nullptr);
for (const SCLY::ScriptLayer& layer : sclyData.layers)
{
for (const std::unique_ptr<IScriptObject>& obj : layer.objects)
{
if ((obj->id & ~0x03FF0000) == entityId)
{
zeus::CAABox entAABB = obj->getVISIAABB(btok);
if (!entAABB.invalid())
entities.emplace_back(entityId, entAABB);
}
}
}
}
}
// Check if pre-generated visi exists, recycle if able
hecl::ProjectPath preVisiPath = inPath.getWithExtension(_SYS_STR(".visi"), true);
if (preVisiPath.getPathType() == hecl::ProjectPath::Type::File)
{
athena::io::FileReader preVisiReader(preVisiPath.getAbsolutePath());
atUint64 preVisiLen = preVisiReader.length();
if (preVisiLen > 26)
{
auto preVisiData = preVisiReader.readUBytes(preVisiLen);
athena::io::MemoryReader preVisiDataReader(preVisiData.get(), preVisiLen);
atUint32 preVisiFourCC = preVisiDataReader.readUint32Big();
atUint32 preVisiVersion = preVisiDataReader.readUint32Big();
preVisiDataReader.readBool();
preVisiDataReader.readBool();
atUint32 preFeatureCount = preVisiDataReader.readUint32Big();
atUint32 preLightsCount = preVisiDataReader.readUint32Big();
atUint32 preLayer2LightCount = preVisiDataReader.readUint32Big();
atUint32 preEntityCount = preVisiDataReader.readUint32Big();
if (preVisiFourCC == 'VISI' && preVisiVersion == 2 &&
preFeatureCount == meshes.size() + entities.size() &&
preLightsCount == lightsVisi[0].size() + lightsVisi[1].size() &&
preLayer2LightCount == lightsVisi[1].size() &&
preEntityCount == entities.size())
{
secs.emplace_back(preVisiLen, 0);
memcpy(secs.back().data(), preVisiData.get(), preVisiLen);
visiGood = true;
}
}
}
#if !WINDOWS_STORE
if (!visiGood)
{
hecl::ProjectPath visiIntOut = outPath.getWithExtension(_SYS_STR(".visiint"));
athena::io::FileWriter w(visiIntOut.getAbsolutePath());
w.writeUint32Big(meshes.size());
for (const DNACMDL::Mesh& mesh : meshes)
{
w.writeUint32Big(uint32_t(mesh.topology));
w.writeUint32Big(mesh.pos.size());
for (const auto& v : mesh.pos)
{
atVec3f xfPos = hecl::blender::MtxVecMul4RM(mesh.sceneXf, v);
w.writeVec3fBig(xfPos);
}
w.writeUint32Big(mesh.surfaces.size());
for (const DNACMDL::Mesh::Surface& surf : mesh.surfaces)
{
w.writeUint32Big(surf.verts.size());
for (const DNACMDL::Mesh::Surface::Vert& vert : surf.verts)
w.writeUint32Big(vert.iPos);
const DNACMDL::Material& mat = mesh.materialSets[0][surf.materialIdx];
w.writeBool(mat.transparent);
}
}
w.writeUint32Big(entities.size());
for (const auto& ent : entities)
{
w.writeUint32Big(ent.first);
w.writeVec3fBig(ent.second.min);
w.writeVec3fBig(ent.second.max);
}
w.writeUint32Big(lightsVisi[0].size() + lightsVisi[1].size());
w.writeUint32Big(lightsVisi[1].size());
for (const auto& light : lightsVisi[1])
w.writeVec3fBig(light);
for (const auto& light : lightsVisi[0])
w.writeVec3fBig(light);
w.close();
hecl::SystemString VisiGenPath = ExeDir + _SYS_STR("/visigen");
#if _WIN32
VisiGenPath += _SYS_STR(".exe");
#endif
hecl::SystemChar thrIdx[16];
hecl::SNPrintf(thrIdx, 16, _SYS_STR("%d"), hecl::ClientProcess::GetThreadWorkerIdx());
hecl::SystemChar parPid[32];
#if _WIN32
hecl::SNPrintf(parPid, 32, _SYS_STR("%lluX"), reinterpret_cast<unsigned long long>(GetCurrentProcess()));
#else
hecl::SNPrintf(parPid, 32, _SYS_STR("%lluX"), (unsigned long long)getpid());
#endif
const hecl::SystemChar* args[] = {VisiGenPath.c_str(),
visiIntOut.getAbsolutePath().data(),
preVisiPath.getAbsolutePath().data(),
thrIdx, parPid, nullptr};
if (0 == hecl::RunProcess(VisiGenPath.c_str(), args))
{
athena::io::FileReader r(preVisiPath.getAbsolutePath());
size_t length = r.length();
secs.emplace_back(length, 0);
r.readBytesToBuf(secs.back().data(), length);
visiGood = true;
}
else
{
Log.report(logvisor::Fatal, _SYS_STR("Unable to launch %s"), VisiGenPath.c_str());
}
}
#endif
}
}
if (!visiGood)
secs.emplace_back(4, 0);
/* PATH */
{
hecl::ProjectPath pathPath(inPath.getParentPath(), _SYS_STR("!path.blend"));
UniqueID32 pathId = pathPath;
secs.emplace_back(4, 0);
athena::io::MemoryWriter w(secs.back().data(), secs.back().size());
pathId.write(w);
}
/* Assemble sizes and add padding */
{
std::vector<uint8_t>& sizesSec = secs[1];
sizesSec.assign((((head.secCount) + 7) & ~7) * 4, 0);
athena::io::MemoryWriter w(sizesSec.data(), sizesSec.size());
for (auto it = secs.begin() + 2 ; it != secs.end() ; ++it)
{
std::vector<uint8_t>& sec = *it;
int i = sec.size();
int end = ROUND_UP_32(i);
sec.resize(end);
w.writeUint32Big(end);
}
}
/* Output all padded sections to file */
athena::io::FileWriter writer(outPath.getAbsolutePath());
for (const std::vector<uint8_t>& sec : secs)
writer.writeUBytes(sec.data(), sec.size());
return true;
}
}