nod/lib/aes.cpp

615 lines
16 KiB
C++
Raw Normal View History

2016-03-04 23:04:30 +00:00
#include "nod/aes.hpp"
2015-06-29 05:35:25 +00:00
#include <stdio.h>
#include <string.h>
2015-07-22 19:01:28 +00:00
#if _WIN32
#include <intrin.h>
#else
2015-06-30 00:07:46 +00:00
#include <cpuid.h>
2015-07-22 19:01:28 +00:00
#endif
2015-06-29 05:35:25 +00:00
2016-03-04 23:04:30 +00:00
namespace nod
2015-06-29 05:35:25 +00:00
{
/* rotates x one bit to the left */
#define ROTL(x) (((x)>>7)|((x)<<1))
/* Rotates 32-bit word left by 1, 2 or 3 byte */
#define ROTL8(x) (((x)<<8)|((x)>>24))
#define ROTL16(x) (((x)<<16)|((x)>>16))
#define ROTL24(x) (((x)<<24)|((x)>>8))
static const uint8_t InCo[4] = {0xB, 0xD, 0x9, 0xE}; /* Inverse Coefficients */
2015-06-30 00:07:46 +00:00
static inline uint32_t pack(const uint8_t* b)
2015-06-29 05:35:25 +00:00
{
/* pack bytes into a 32-bit Word */
return ((uint32_t)b[3] << 24) | ((uint32_t)b[2] << 16) | ((uint32_t)b[1] << 8) | (uint32_t)b[0];
}
2015-06-30 00:07:46 +00:00
static inline void unpack(uint32_t a, uint8_t* b)
2015-06-29 05:35:25 +00:00
{
/* unpack bytes from a word */
b[0] = (uint8_t)a;
b[1] = (uint8_t)(a >> 8);
b[2] = (uint8_t)(a >> 16);
b[3] = (uint8_t)(a >> 24);
}
2015-06-30 00:07:46 +00:00
static inline uint8_t xtime(uint8_t a)
2015-06-29 05:35:25 +00:00
{
2015-07-27 00:08:35 +00:00
return ((a << 1) ^ (((a>>7) & 1) * 0x11B));
2015-06-29 05:35:25 +00:00
}
2015-07-14 02:24:17 +00:00
static const struct SoftwareAESTables
2015-06-30 00:07:46 +00:00
{
uint8_t fbsub[256];
uint8_t rbsub[256];
uint8_t ptab[256], ltab[256];
uint32_t ftable[256];
uint32_t rtable[256];
uint32_t rco[30];
2015-07-14 02:24:17 +00:00
uint8_t bmul(uint8_t x, uint8_t y) const
{
/* x.y= AntiLog(Log(x) + Log(y)) */
if (x && y) return ptab[(ltab[x] + ltab[y]) % 255];
else return 0;
}
2015-06-30 00:07:46 +00:00
2015-07-14 02:24:17 +00:00
uint32_t SubByte(uint32_t a) const
{
uint8_t b[4];
unpack(a, b);
b[0] = fbsub[b[0]];
b[1] = fbsub[b[1]];
b[2] = fbsub[b[2]];
b[3] = fbsub[b[3]];
return pack(b);
}
2015-06-30 00:07:46 +00:00
2015-07-14 02:24:17 +00:00
uint8_t product(uint32_t x, uint32_t y) const
{
/* dot product of two 4-byte arrays */
uint8_t xb[4], yb[4];
unpack(x, xb);
unpack(y, yb);
return bmul(xb[0], yb[0])^bmul(xb[1], yb[1])^bmul(xb[2], yb[2])^bmul(xb[3], yb[3]);
}
2015-06-30 00:07:46 +00:00
2015-07-14 02:24:17 +00:00
uint32_t InvMixCol(uint32_t x) const
{
/* matrix Multiplication */
uint32_t y, m;
uint8_t b[4];
m = pack(InCo);
b[3] = product(m, x);
m = ROTL24(m);
b[2] = product(m, x);
m = ROTL24(m);
b[1] = product(m, x);
m = ROTL24(m);
b[0] = product(m, x);
y = pack(b);
return y;
}
2015-06-30 00:07:46 +00:00
2015-07-14 02:24:17 +00:00
uint8_t ByteSub(uint8_t x) const
{
uint8_t y = ptab[255 - ltab[x]]; /* multiplicative inverse */
x = y;
x = ROTL(x);
y ^= x;
x = ROTL(x);
y ^= x;
x = ROTL(x);
y ^= x;
x = ROTL(x);
y ^= x;
y ^= 0x63;
return y;
}
2015-06-30 00:07:46 +00:00
2015-07-14 02:24:17 +00:00
SoftwareAESTables()
{
/* generate tables */
int i;
uint8_t y, b[4];
2015-06-29 05:35:25 +00:00
2015-07-14 02:24:17 +00:00
/* use 3 as primitive root to generate power and log tables */
2015-06-29 05:35:25 +00:00
2015-07-14 02:24:17 +00:00
ltab[0] = 0;
ptab[0] = 1;
ltab[1] = 0;
ptab[1] = 3;
ltab[3] = 1;
2015-06-29 05:35:25 +00:00
2015-07-14 02:24:17 +00:00
for (i = 2; i < 256; i++)
{
ptab[i] = ptab[i - 1] ^ xtime(ptab[i - 1]);
ltab[ptab[i]] = i;
}
2015-06-29 05:35:25 +00:00
2015-07-14 02:24:17 +00:00
/* affine transformation:- each bit is xored with itself shifted one bit */
2015-06-29 05:35:25 +00:00
2015-07-14 02:24:17 +00:00
fbsub[0] = 0x63;
rbsub[0x63] = 0;
2015-06-29 05:35:25 +00:00
2015-07-14 02:24:17 +00:00
for (i = 1; i < 256; i++)
{
y = ByteSub((uint8_t)i);
fbsub[i] = y;
rbsub[y] = i;
}
2015-06-29 05:35:25 +00:00
2015-07-14 02:24:17 +00:00
for (i = 0, y = 1; i < 30; i++)
{
rco[i] = y;
y = xtime(y);
}
2015-06-29 05:35:25 +00:00
2015-07-14 02:24:17 +00:00
/* calculate forward and reverse tables */
for (i = 0; i < 256; i++)
{
y = fbsub[i];
b[3] = y ^ xtime(y);
b[2] = y;
b[1] = y;
b[0] = xtime(y);
ftable[i] = pack(b);
y = rbsub[i];
b[3] = bmul(InCo[0], y);
b[2] = bmul(InCo[1], y);
b[1] = bmul(InCo[2], y);
b[0] = bmul(InCo[3], y);
rtable[i] = pack(b);
}
2015-06-29 05:35:25 +00:00
}
2015-07-14 02:24:17 +00:00
} AEStb;
2015-06-29 05:35:25 +00:00
2015-07-14 02:24:17 +00:00
class SoftwareAES : public IAES
{
protected:
/* Parameter-dependent data */
int Nk, Nb, Nr;
uint8_t fi[24], ri[24];
uint32_t fkey[120];
uint32_t rkey[120];
2015-06-29 05:35:25 +00:00
2015-07-14 02:24:17 +00:00
void gkey(int nb, int nk, const uint8_t* key);
void _encrypt(uint8_t* buff);
void _decrypt(uint8_t* buff);
2015-06-29 05:35:25 +00:00
2015-07-14 02:24:17 +00:00
public:
2015-09-02 18:53:24 +00:00
void encrypt(const uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len);
void decrypt(const uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len);
2015-07-14 02:24:17 +00:00
void setKey(const uint8_t* key);
};
2015-06-29 05:35:25 +00:00
void SoftwareAES::gkey(int nb, int nk, const uint8_t* key)
{
/* blocksize=32*nb bits. Key=32*nk bits */
/* currently nb,bk = 4, 6 or 8 */
/* key comes as 4*Nk bytes */
/* Key Scheduler. Create expanded encryption key */
int i, j, k, m, N;
int C1, C2, C3;
uint32_t CipherKey[8];
Nb = nb;
Nk = nk;
/* Nr is number of rounds */
if (Nb >= Nk) Nr = 6 + Nb;
else Nr = 6 + Nk;
C1 = 1;
if (Nb < 8) { C2 = 2; C3 = 3; }
else { C2 = 3; C3 = 4; }
/* pre-calculate forward and reverse increments */
for (m = j = 0; j < nb; j++, m += 3)
{
fi[m] = (j + C1) % nb;
fi[m + 1] = (j + C2) % nb;
fi[m + 2] = (j + C3) % nb;
ri[m] = (nb + j - C1) % nb;
ri[m + 1] = (nb + j - C2) % nb;
ri[m + 2] = (nb + j - C3) % nb;
}
N = Nb * (Nr + 1);
for (i = j = 0; i < Nk; i++, j += 4)
{
CipherKey[i] = pack(key + j);
}
for (i = 0; i < Nk; i++) fkey[i] = CipherKey[i];
for (j = Nk, k = 0; j < N; j += Nk, k++)
{
2015-07-14 02:24:17 +00:00
fkey[j] = fkey[j - Nk] ^ AEStb.SubByte(ROTL24(fkey[j - 1]))^AEStb.rco[k];
2015-06-29 05:35:25 +00:00
if (Nk <= 6)
{
for (i = 1; i < Nk && (i + j) < N; i++)
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
}
else
{
for (i = 1; i < 4 && (i + j) < N; i++)
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
2015-07-14 02:24:17 +00:00
if ((j + 4) < N) fkey[j + 4] = fkey[j + 4 - Nk] ^ AEStb.SubByte(fkey[j + 3]);
2015-06-29 05:35:25 +00:00
for (i = 5; i < Nk && (i + j) < N; i++)
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
}
}
/* now for the expanded decrypt key in reverse order */
for (j = 0; j < Nb; j++) rkey[j + N - Nb] = fkey[j];
for (i = Nb; i < N - Nb; i += Nb)
{
k = N - Nb - i;
2015-07-14 02:24:17 +00:00
for (j = 0; j < Nb; j++) rkey[k + j] = AEStb.InvMixCol(fkey[i + j]);
2015-06-29 05:35:25 +00:00
}
for (j = N - Nb; j < N; j++) rkey[j - N + Nb] = fkey[j];
}
/* There is an obvious time/space trade-off possible here. *
* Instead of just one ftable[], I could have 4, the other *
* 3 pre-rotated to save the ROTL8, ROTL16 and ROTL24 overhead */
void SoftwareAES::_encrypt(uint8_t* buff)
{
int i, j, k, m;
uint32_t a[8], b[8], *x, *y, *t;
for (i = j = 0; i < Nb; i++, j += 4)
{
a[i] = pack(buff + j);
a[i] ^= fkey[i];
}
k = Nb;
x = a;
y = b;
/* State alternates between a and b */
for (i = 1; i < Nr; i++)
{
/* Nr is number of rounds. May be odd. */
/* if Nb is fixed - unroll this next
loop and hard-code in the values of fi[] */
for (m = j = 0; j < Nb; j++, m += 3)
{
/* deal with each 32-bit element of the State */
/* This is the time-critical bit */
2015-07-14 02:24:17 +00:00
y[j] = fkey[k++] ^ AEStb.ftable[(uint8_t)x[j]] ^
ROTL8(AEStb.ftable[(uint8_t)(x[fi[m]] >> 8)])^
ROTL16(AEStb.ftable[(uint8_t)(x[fi[m + 1]] >> 16)])^
ROTL24(AEStb.ftable[(uint8_t)(x[fi[m + 2]] >> 24)]);
2015-06-29 05:35:25 +00:00
}
t = x;
x = y;
y = t; /* swap pointers */
}
/* Last Round - unroll if possible */
for (m = j = 0; j < Nb; j++, m += 3)
{
2015-07-14 02:24:17 +00:00
y[j] = fkey[k++] ^ (uint32_t)AEStb.fbsub[(uint8_t)x[j]] ^
ROTL8((uint32_t)AEStb.fbsub[(uint8_t)(x[fi[m]] >> 8)])^
ROTL16((uint32_t)AEStb.fbsub[(uint8_t)(x[fi[m + 1]] >> 16)])^
ROTL24((uint32_t)AEStb.fbsub[(uint8_t)(x[fi[m + 2]] >> 24)]);
2015-06-29 05:35:25 +00:00
}
for (i = j = 0; i < Nb; i++, j += 4)
{
unpack(y[i], (uint8_t*)&buff[j]);
x[i] = y[i] = 0; /* clean up stack */
}
return;
}
void SoftwareAES::_decrypt(uint8_t* buff)
{
int i, j, k, m;
uint32_t a[8], b[8], *x, *y, *t;
for (i = j = 0; i < Nb; i++, j += 4)
{
a[i] = pack(buff + j);
a[i] ^= rkey[i];
}
k = Nb;
x = a;
y = b;
/* State alternates between a and b */
for (i = 1; i < Nr; i++)
{
/* Nr is number of rounds. May be odd. */
/* if Nb is fixed - unroll this next
loop and hard-code in the values of ri[] */
for (m = j = 0; j < Nb; j++, m += 3)
{
/* This is the time-critical bit */
2015-07-14 02:24:17 +00:00
y[j] = rkey[k++] ^ AEStb.rtable[(uint8_t)x[j]] ^
ROTL8(AEStb.rtable[(uint8_t)(x[ri[m]] >> 8)])^
ROTL16(AEStb.rtable[(uint8_t)(x[ri[m + 1]] >> 16)])^
ROTL24(AEStb.rtable[(uint8_t)(x[ri[m + 2]] >> 24)]);
2015-06-29 05:35:25 +00:00
}
t = x;
x = y;
y = t; /* swap pointers */
}
/* Last Round - unroll if possible */
for (m = j = 0; j < Nb; j++, m += 3)
{
2015-07-14 02:24:17 +00:00
y[j] = rkey[k++] ^ (uint32_t)AEStb.rbsub[(uint8_t)x[j]] ^
ROTL8((uint32_t)AEStb.rbsub[(uint8_t)(x[ri[m]] >> 8)])^
ROTL16((uint32_t)AEStb.rbsub[(uint8_t)(x[ri[m + 1]] >> 16)])^
ROTL24((uint32_t)AEStb.rbsub[(uint8_t)(x[ri[m + 2]] >> 24)]);
2015-06-29 05:35:25 +00:00
}
for (i = j = 0; i < Nb; i++, j += 4)
{
unpack(y[i], (uint8_t*)&buff[j]);
x[i] = y[i] = 0; /* clean up stack */
}
return;
}
void SoftwareAES::setKey(const uint8_t* key)
{
gkey(4, 4, key);
}
// CBC mode decryption
2015-07-03 01:57:31 +00:00
void SoftwareAES::decrypt(const uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len)
2015-06-29 05:35:25 +00:00
{
uint8_t block[16];
2015-07-03 01:57:31 +00:00
const uint8_t* ctext_ptr;
2015-06-29 05:35:25 +00:00
unsigned int blockno = 0, i;
//fprintf( stderr,"aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len );
//printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
for (blockno = 0; blockno <= (len / sizeof(block)); blockno++)
{
unsigned int fraction;
if (blockno == (len / sizeof(block))) // last block
{
fraction = len % sizeof(block);
if (fraction == 0) break;
memset(block, 0, sizeof(block));
}
else fraction = 16;
// debug_printf("block %d: fraction = %d\n", blockno, fraction);
memcpy(block, inbuf + blockno * sizeof(block), fraction);
_decrypt(block);
if (blockno == 0) ctext_ptr = iv;
else ctext_ptr = (uint8_t*)(inbuf + (blockno - 1) * sizeof(block));
for (i = 0; i < fraction; i++)
outbuf[blockno * sizeof(block) + i] =
ctext_ptr[i] ^ block[i];
// debug_printf("Block %d output: ", blockno);
// hexdump(outbuf + blockno*sizeof(block), 16);
}
}
// CBC mode encryption
2015-09-02 18:53:24 +00:00
void SoftwareAES::encrypt(const uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len)
2015-06-29 05:35:25 +00:00
{
uint8_t block[16];
2015-07-03 01:57:31 +00:00
uint8_t feedback[16];
memcpy(feedback, iv, 16);
2015-06-29 05:35:25 +00:00
unsigned int blockno = 0, i;
//printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
//fprintf( stderr,"aes_encrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
for (blockno = 0; blockno <= (len / sizeof(block)); blockno++)
{
unsigned int fraction;
if (blockno == (len / sizeof(block))) // last block
{
fraction = len % sizeof(block);
if (fraction == 0) break;
memset(block, 0, sizeof(block));
}
else fraction = 16;
// debug_printf("block %d: fraction = %d\n", blockno, fraction);
memcpy(block, inbuf + blockno * sizeof(block), fraction);
for (i = 0; i < fraction; i++)
2015-07-03 01:57:31 +00:00
block[i] = inbuf[blockno * sizeof(block) + i] ^ feedback[i];
2015-06-29 05:35:25 +00:00
_encrypt(block);
2015-07-03 01:57:31 +00:00
memcpy(feedback, block, sizeof(block));
2015-06-29 05:35:25 +00:00
memcpy(outbuf + blockno * sizeof(block), block, sizeof(block));
// debug_printf("Block %d output: ", blockno);
// hexdump(outbuf + blockno*sizeof(block), 16);
}
}
2015-07-14 00:38:16 +00:00
#if __AES__ || _MSC_VER >= 1800
2015-06-29 05:35:25 +00:00
2015-06-30 00:07:46 +00:00
#include <wmmintrin.h>
2015-06-29 05:35:25 +00:00
2015-06-30 00:07:46 +00:00
class NiAES : public IAES
2015-06-29 05:35:25 +00:00
{
2015-06-30 00:07:46 +00:00
__m128i m_ekey[11];
__m128i m_dkey[11];
public:
2015-09-02 18:53:24 +00:00
void encrypt(const uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len)
2015-06-30 00:07:46 +00:00
{
__m128i feedback,data;
uint64_t i,j;
2015-06-30 00:07:46 +00:00
if (len%16)
len = len/16+1;
else
len /= 16;
feedback = _mm_loadu_si128((__m128i*)iv);
for (i=0 ; i<len ; i++)
{
data = _mm_loadu_si128(&((__m128i*)inbuf)[i]);
feedback = _mm_xor_si128(data, feedback);
feedback = _mm_xor_si128(feedback, m_ekey[0]);
for (j=1 ; j<10 ; j++)
feedback = _mm_aesenc_si128(feedback, m_ekey[j]);
feedback = _mm_aesenclast_si128(feedback, m_ekey[j]);
_mm_storeu_si128(&((__m128i*)outbuf)[i], feedback);
}
}
2015-09-02 18:53:24 +00:00
void decrypt(const uint8_t* iv, const uint8_t* inbuf, uint8_t* outbuf, size_t len)
2015-06-30 00:07:46 +00:00
{
__m128i data,feedback,last_in;
uint64_t i,j;
2015-06-30 00:07:46 +00:00
if (len%16)
len = len/16+1;
else
len /= 16;
feedback = _mm_loadu_si128((__m128i*)iv);
for (i=0 ; i<len ; i++)
{
last_in=_mm_loadu_si128(&((__m128i*)inbuf)[i]);
data = _mm_xor_si128(last_in, m_dkey[0]);
for (j=1 ; j<10 ; j++)
data = _mm_aesdec_si128(data, m_dkey[j]);
data = _mm_aesdeclast_si128(data, m_dkey[j]);
data = _mm_xor_si128(data, feedback);
_mm_storeu_si128(&((__m128i*)outbuf)[i], data);
feedback = last_in;
}
}
2015-06-29 05:35:25 +00:00
2015-06-30 00:07:46 +00:00
static inline __m128i AES_128_ASSIST (__m128i temp1, __m128i temp2)
{
__m128i temp3;
temp2 = _mm_shuffle_epi32 (temp2 ,0xff);
temp3 = _mm_slli_si128 (temp1, 0x4);
temp1 = _mm_xor_si128 (temp1, temp3);
temp3 = _mm_slli_si128 (temp3, 0x4);
temp1 = _mm_xor_si128 (temp1, temp3);
temp3 = _mm_slli_si128 (temp3, 0x4);
temp1 = _mm_xor_si128 (temp1, temp3);
temp1 = _mm_xor_si128 (temp1, temp2);
return temp1;
}
void setKey(const uint8_t* key)
{
__m128i temp1, temp2;
temp1 = _mm_loadu_si128((__m128i*)key);
m_ekey[0] = temp1;
m_dkey[10] = temp1;
temp2 = _mm_aeskeygenassist_si128(temp1, 0x1);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[1] = temp1;
m_dkey[9] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x2);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[2] = temp1;
m_dkey[8] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x4);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[3] = temp1;
m_dkey[7] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x8);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[4] = temp1;
m_dkey[6] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x10);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[5] = temp1;
m_dkey[5] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x20);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[6] = temp1;
m_dkey[4] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x40);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[7] = temp1;
m_dkey[3] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x80);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[8] = temp1;
m_dkey[2] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x1b);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[9] = temp1;
m_dkey[1] = _mm_aesimc_si128(temp1);
temp2 = _mm_aeskeygenassist_si128(temp1, 0x36);
temp1 = AES_128_ASSIST(temp1, temp2);
m_ekey[10] = temp1;
m_dkey[0] = temp1;
}
};
2015-06-29 05:35:25 +00:00
#endif
static int HAS_AES_NI = -1;
std::unique_ptr<IAES> NewAES()
{
2015-07-14 00:38:16 +00:00
#if __AES__ || _MSC_VER >= 1800
2015-06-29 05:35:25 +00:00
if (HAS_AES_NI == -1)
{
2015-07-14 00:38:16 +00:00
#if _MSC_VER
int info[4];
__cpuid(info, 1);
HAS_AES_NI = ((info[2] & 0x2000000) != 0);
#else
2015-06-29 05:35:25 +00:00
unsigned int a,b,c,d;
__cpuid(1, a,b,c,d);
2015-06-30 06:46:19 +00:00
HAS_AES_NI = ((c & 0x2000000) != 0);
2015-07-14 00:38:16 +00:00
#endif
2015-06-29 05:35:25 +00:00
}
if (HAS_AES_NI)
return std::unique_ptr<IAES>(new NiAES);
else
return std::unique_ptr<IAES>(new SoftwareAES);
2015-06-30 00:07:46 +00:00
#else
return std::unique_ptr<IAES>(new SoftwareAES);
#endif
2015-06-29 05:35:25 +00:00
}
}