#include #include #include #include #include "nod/DiscWii.hpp" #include "nod/aes.hpp" #include "nod/sha1.h" namespace nod { static const uint8_t COMMON_KEYS[2][16] = { /* Normal */ {0xeb, 0xe4, 0x2a, 0x22, 0x5e, 0x85, 0x93, 0xe4, 0x48, 0xd9, 0xc5, 0x45, 0x73, 0x81, 0xaa, 0xf7}, /* Korean */ {0x63, 0xb8, 0x2b, 0xb4, 0xf4, 0x61, 0x4e, 0x2e, 0x13, 0xf2, 0xfe, 0xfb, 0xba, 0x4c, 0x9b, 0x7e} }; class PartitionWii : public DiscBase::IPartition { enum class SigType : uint32_t { RSA_4096 = 0x00010000, RSA_2048 = 0x00010001, ELIPTICAL_CURVE = 0x00010002 }; enum class KeyType : uint32_t { RSA_4096 = 0x00000000, RSA_2048 = 0x00000001 }; struct Ticket { uint32_t sigType; char sig[256]; char padding[60]; char sigIssuer[64]; char ecdh[60]; char padding1[3]; unsigned char encKey[16]; char padding2; char ticketId[8]; char consoleId[4]; char titleId[8]; char padding3[2]; uint16_t ticketVersion; uint32_t permittedTitlesMask; uint32_t permitMask; char titleExportAllowed; char commonKeyIdx; char padding4[48]; char contentAccessPermissions[64]; char padding5[2]; struct TimeLimit { uint32_t enableTimeLimit; uint32_t timeLimit; } timeLimits[8]; void read(IDiscIO::IReadStream& s) { s.read(this, 676); sigType = SBig(sigType); ticketVersion = SBig(ticketVersion); permittedTitlesMask = SBig(permittedTitlesMask); permitMask = SBig(permitMask); for (size_t t=0 ; t<8 ; ++t) { timeLimits[t].enableTimeLimit = SBig(timeLimits[t].enableTimeLimit); timeLimits[t].timeLimit = SBig(timeLimits[t].timeLimit); } } } m_ticket; struct TMD { SigType sigType; char sig[256]; char padding[60]; char sigIssuer[64]; char version; char caCrlVersion; char signerCrlVersion; char padding1; uint32_t iosIdMajor; uint32_t iosIdMinor; uint32_t titleIdMajor; char titleIdMinor[4]; uint32_t titleType; uint16_t groupId; char padding2[62]; uint32_t accessFlags; uint16_t titleVersion; uint16_t numContents; uint16_t bootIdx; uint16_t padding3; struct Content { uint32_t id; uint16_t index; uint16_t type; uint64_t size; char hash[20]; void read(IDiscIO::IReadStream& s) { s.read(this, 36); id = SBig(id); index = SBig(index); type = SBig(type); size = SBig(size); } }; std::vector contents; void read(IDiscIO::IReadStream& s) { s.read(this, 484); sigType = SigType(SBig(uint32_t(sigType))); iosIdMajor = SBig(iosIdMajor); iosIdMinor = SBig(iosIdMinor); titleIdMajor = SBig(titleIdMajor); titleType = SBig(titleType); groupId = SBig(groupId); accessFlags = SBig(accessFlags); titleVersion = SBig(titleVersion); numContents = SBig(numContents); bootIdx = SBig(bootIdx); contents.clear(); contents.reserve(numContents); for (uint16_t c=0 ; c s = parent.getDiscIO().beginReadStream(offset); if (!s) { err = true; return; } m_ticket.read(*s); uint32_t tmdSize; s->read(&tmdSize, 4); tmdSize = SBig(tmdSize); uint32_t tmdOff; s->read(&tmdOff, 4); tmdOff = SBig(tmdOff) << 2; uint32_t certChainSize; s->read(&certChainSize, 4); certChainSize = SBig(certChainSize); uint32_t certChainOff; s->read(&certChainOff, 4); certChainOff = SBig(certChainOff) << 2; uint32_t globalHashTableOff; s->read(&globalHashTableOff, 4); globalHashTableOff = SBig(globalHashTableOff) << 2; uint32_t dataOff; s->read(&dataOff, 4); dataOff = SBig(dataOff) << 2; m_dataOff = offset + dataOff; uint32_t dataSize; s->read(&dataSize, 4); dataSize = SBig(dataSize) << 2; s->seek(offset + tmdOff); m_tmd.read(*s); s->seek(offset + certChainOff); m_caCert.read(*s); m_tmdCert.read(*s); m_ticketCert.read(*s); /* Decrypt title key */ std::unique_ptr aes = NewAES(); uint8_t iv[16] = {}; memcpy(iv, m_ticket.titleId, 8); aes->setKey(COMMON_KEYS[(int)m_ticket.commonKeyIdx]); aes->decrypt(iv, m_ticket.encKey, m_decKey, 16); /* Wii-specific header reads (now using title key to decrypt) */ std::unique_ptr ds = beginReadStream(0x420); if (!ds) { err = true; return; } uint32_t vals[3]; ds->read(vals, 12); m_dolOff = SBig(vals[0]) << 2; m_fstOff = SBig(vals[1]) << 2; m_fstSz = SBig(vals[2]) << 2; ds->seek(0x2440 + 0x14); ds->read(vals, 8); m_apploaderSz = 32 + SBig(vals[0]) + SBig(vals[1]); /* Yay files!! */ parseFST(*ds); /* Also make DOL header and size handy */ ds->seek(m_dolOff); parseDOL(*ds); } class PartReadStream : public IPartReadStream { std::unique_ptr m_aes; const PartitionWii& m_parent; uint64_t m_baseOffset; uint64_t m_offset; std::unique_ptr m_dio; size_t m_curBlock = SIZE_MAX; uint8_t m_encBuf[0x8000]; uint8_t m_decBuf[0x7c00]; void decryptBlock() { m_dio->read(m_encBuf, 0x8000); m_aes->decrypt(&m_encBuf[0x3d0], &m_encBuf[0x400], m_decBuf, 0x7c00); } public: PartReadStream(const PartitionWii& parent, uint64_t baseOffset, uint64_t offset, bool& err) : m_aes(NewAES()), m_parent(parent), m_baseOffset(baseOffset), m_offset(offset) { m_aes->setKey(parent.m_decKey); size_t block = m_offset / 0x7c00; m_dio = m_parent.m_parent.getDiscIO().beginReadStream(m_baseOffset + block * 0x8000); if (!m_dio) { err = true; return; } decryptBlock(); m_curBlock = block; } void seek(int64_t offset, int whence) { if (whence == SEEK_SET) m_offset = offset; else if (whence == SEEK_CUR) m_offset += offset; else return; size_t block = m_offset / 0x7c00; if (block != m_curBlock) { m_dio->seek(m_baseOffset + block * 0x8000); decryptBlock(); m_curBlock = block; } } uint64_t position() const {return m_offset;} uint64_t read(void* buf, uint64_t length) { size_t block = m_offset / 0x7c00; size_t cacheOffset = m_offset % 0x7c00; uint64_t cacheSize; uint64_t rem = length; uint8_t* dst = (uint8_t*)buf; while (rem) { if (block != m_curBlock) { decryptBlock(); m_curBlock = block; } cacheSize = rem; if (cacheSize + cacheOffset > 0x7c00) cacheSize = 0x7c00 - cacheOffset; memcpy(dst, m_decBuf + cacheOffset, cacheSize); dst += cacheSize; rem -= cacheSize; cacheOffset = 0; ++block; } m_offset += length; return dst - (uint8_t*)buf; } }; std::unique_ptr beginReadStream(uint64_t offset) const { bool Err = false; auto ret = std::unique_ptr(new PartReadStream(*this, m_dataOff, offset, Err)); if (Err) return {}; return ret; } uint64_t normalizeOffset(uint64_t anOffset) const {return anOffset << 2;} std::unique_ptr readPartitionHeaderBuf(size_t& szOut) const { { std::unique_ptr rs = m_parent.getDiscIO().beginReadStream(m_offset + 0x2B4); if (!rs) return {}; uint32_t h3; if (rs->read(&h3, 4) != 4) { LogModule.report(logvisor::Error, _S("unable to read H3 offset apploader")); return {}; } h3 = SBig(h3); szOut = uint64_t(h3) << 2; } std::unique_ptr rs = m_parent.getDiscIO().beginReadStream(m_offset); if (!rs) return {}; std::unique_ptr buf(new uint8_t[szOut]); rs->read(buf.get(), szOut); return buf; } bool writeOutPartitionHeader(const SystemChar* pathOut) const { std::unique_ptr ws = NewFileIO(pathOut)->beginWriteStream(); if (!ws) return false; uint64_t h3Off; { std::unique_ptr rs = m_parent.getDiscIO().beginReadStream(m_offset + 0x2B4); if (!rs) return false; uint32_t h3; if (rs->read(&h3, 4) != 4) { LogModule.report(logvisor::Error, _S("unable to read H3 offset to %s"), pathOut); return false; } h3 = SBig(h3); h3Off = uint64_t(h3) << 2; } char buf[8192]; size_t rem = h3Off; std::unique_ptr rs = m_parent.getDiscIO().beginReadStream(m_offset); if (!rs) return false; while (rem) { size_t rdSz = nod::min(rem, size_t(8192ul)); rs->read(buf, rdSz); ws->write(buf, rdSz); rem -= rdSz; } return true; } }; DiscWii::DiscWii(std::unique_ptr&& dio, bool& err) : DiscBase(std::move(dio), err) { if (err) return; /* Read partition info */ struct PartInfo { uint32_t partCount; uint32_t partInfoOff; struct Part { uint32_t partDataOff; IPartition::Kind partType; } parts[4]; PartInfo(IDiscIO& dio, bool& err) { std::unique_ptr s = dio.beginReadStream(0x40000); if (!s) { err = true; return; } s->read(this, 32); partCount = SBig(partCount); partInfoOff = SBig(partInfoOff); s->seek(partInfoOff << 2); for (uint32_t p=0 ; pread(&parts[p], 8); parts[p].partDataOff = SBig(parts[p].partDataOff); parts[p].partType = IPartition::Kind(SBig(uint32_t(parts[p].partType))); } } } partInfo(*m_discIO, err); if (err) return; /* Iterate for data partition */ m_partitions.reserve(partInfo.partCount); for (uint32_t p=0 ; p& part : m_partitions) { if (part->getKind() == IPartition::Kind::Data) { return static_cast(*part).writeOutPartitionHeader(pathOut); } } return false; } static const uint8_t ZEROIV[16] = {0}; class PartitionBuilderWii : public DiscBuilderBase::PartitionBuilderBase { friend class DiscBuilderWii; friend class DiscMergerWii; uint64_t m_baseOffset; uint64_t m_userOffset = 0; uint64_t m_curUser = 0x1F0000; std::unique_ptr m_aes; uint8_t m_h3[4916][20] = {}; public: class PartWriteStream : public IPartWriteStream { friend class PartitionBuilderWii; PartitionBuilderWii& m_parent; uint64_t m_baseOffset; uint64_t m_offset; std::unique_ptr m_fio; bool m_closed = false; size_t m_curGroup = SIZE_MAX; char m_buf[0x200000]; void encryptGroup(uint8_t h3Out[20]) { sha1nfo sha; uint8_t h2[8][20]; for (int s=0 ; s<8 ; ++s) { char* ptr1 = m_buf + s*0x40000; uint8_t h1[8][20]; for (int c=0 ; c<8 ; ++c) { char* ptr0 = ptr1 + c*0x8000; uint8_t h0[31][20]; for (int j=0 ; j<31 ; ++j) { sha1_init(&sha); sha1_write(&sha, ptr0 + (j+1)*0x400, 0x400); memcpy(h0[j], sha1_result(&sha), 20); } sha1_init(&sha); sha1_write(&sha, (char*)h0, 0x26C); memcpy(h1[c], sha1_result(&sha), 20); memcpy(ptr0, h0, 0x26C); memset(ptr0+0x26C, 0, 0x014); } sha1_init(&sha); sha1_write(&sha, (char*)h1, 0x0A0); memcpy(h2[s], sha1_result(&sha), 20); for (int c=0 ; c<8 ; ++c) { char* ptr0 = ptr1 + c*0x8000; memcpy(ptr0+0x280, h1, 0x0A0); memset(ptr0+0x320, 0, 0x020); } } sha1_init(&sha); sha1_write(&sha, (char*)h2, 0x0A0); memcpy(h3Out, sha1_result(&sha), 20); for (int s=0 ; s<8 ; ++s) { char* ptr1 = m_buf + s*0x40000; for (int c=0 ; c<8 ; ++c) { char* ptr0 = ptr1 + c*0x8000; memcpy(ptr0+0x340, h2, 0x0A0); memset(ptr0+0x3E0, 0, 0x020); m_parent.m_aes->encrypt(ZEROIV, (uint8_t*)ptr0, (uint8_t*)ptr0, 0x400); m_parent.m_aes->encrypt((uint8_t*)(ptr0+0x3D0), (uint8_t*)(ptr0+0x400), (uint8_t*)(ptr0+0x400), 0x7c00); } } if (m_fio->write(m_buf, 0x200000) != 0x200000) { LogModule.report(logvisor::Error, "unable to write full disc group"); return; } } public: PartWriteStream(PartitionBuilderWii& parent, uint64_t baseOffset, uint64_t offset, bool& err) : m_parent(parent), m_baseOffset(baseOffset), m_offset(offset) { if (offset % 0x1F0000) { LogModule.report(logvisor::Error, "partition write stream MUST begin on 0x1F0000-aligned boundary"); err = true; return; } size_t group = m_offset / 0x1F0000; m_fio = m_parent.m_parent.getFileIO().beginWriteStream(m_baseOffset + group * 0x200000); if (!m_fio) err = true; m_curGroup = group; } ~PartWriteStream() {close();} void close() { if (m_closed) return; m_closed = true; size_t rem = m_offset % 0x1F0000; if (rem) { rem = 0x1F0000 - rem; write(nullptr, rem); } encryptGroup(m_parent.m_h3[m_curGroup]); m_fio.reset(); } uint64_t position() const {return m_offset;} uint64_t write(const void* buf, uint64_t length) { size_t group = m_offset / 0x1F0000; size_t block = (m_offset - group * 0x1F0000) / 0x7c00; size_t cacheOffset = m_offset % 0x7c00; uint64_t cacheSize; uint64_t rem = length; const uint8_t* src = (uint8_t*)buf; while (rem) { if (group != m_curGroup) { encryptGroup(m_parent.m_h3[m_curGroup]); m_curGroup = group; } cacheSize = rem; if (cacheSize + cacheOffset > 0x7c00) cacheSize = 0x7c00 - cacheOffset; if (src) { memcpy(m_buf + block * 0x8000 + 0x400 + cacheOffset, src, cacheSize); src += cacheSize; } else memset(m_buf + block * 0x8000 + 0x400 + cacheOffset, 0, cacheSize); rem -= cacheSize; cacheOffset = 0; ++block; if (block == 64) { block = 0; ++group; } } m_offset += length; return length; } }; PartitionBuilderWii(DiscBuilderBase& parent, Kind kind, const char gameID[6], const char* gameTitle, uint64_t baseOffset) : DiscBuilderBase::PartitionBuilderBase(parent, kind, gameID, gameTitle), m_baseOffset(baseOffset), m_aes(NewAES()) {} uint64_t getCurUserEnd() const {return m_curUser;} uint64_t userAllocate(uint64_t reqSz, IPartWriteStream& ws) { reqSz = ROUND_UP_32(reqSz); if (m_curUser + reqSz >= 0x1FB450000) { LogModule.report(logvisor::Error, "partition exceeds maximum single-partition capacity"); return -1; } uint64_t ret = m_curUser; PartWriteStream& cws = static_cast(ws); if (cws.m_offset > ret) { LogModule.report(logvisor::Error, "partition overwrite error"); return -1; } while (cws.m_offset < ret) cws.write("\xff", 1); m_curUser += reqSz; return ret; } uint32_t packOffset(uint64_t offset) const { return uint32_t(offset >> uint64_t(2)); } std::unique_ptr beginWriteStream(uint64_t offset) { bool Err = false; std::unique_ptr ret = std::make_unique(*this, m_baseOffset + m_userOffset, offset, Err); if (Err) return {}; return ret; } uint64_t _build(const std::function& contentFunc, const std::function& apploaderFunc, const uint8_t* phBuf, size_t phSz, size_t apploaderSz) { /* Read head and validate key members */ uint8_t tkey[16]; { if (0x1BF + 16 > phSz) { LogModule.report(logvisor::Error, _S("unable to read title key")); return -1; } memmove(tkey, phBuf + 0x1BF, 16); } uint8_t tkeyiv[16] = {}; { if (0x1DC + 8 > phSz) { LogModule.report(logvisor::Error, _S("unable to read title key IV")); return -1; } memmove(tkeyiv, phBuf + 0x1DC, 8); } uint8_t ccIdx; { if (0x1F1 + 1 > phSz) { LogModule.report(logvisor::Error, _S("unable to read common key index")); return -1; } memmove(&ccIdx, phBuf + 0x1F1, 1); if (ccIdx > 1) { LogModule.report(logvisor::Error, _S("common key index may only be 0 or 1")); return -1; } } uint32_t tmdSz; { if (0x2A4 + 4 > phSz) { LogModule.report(logvisor::Error, _S("unable to read TMD size")); return -1; } memmove(&tmdSz, phBuf + 0x2A4, 4); tmdSz = SBig(tmdSz); } uint64_t h3Off; { uint32_t h3Ptr; if (0x2B4 + 4 > phSz) { LogModule.report(logvisor::Error, _S("unable to read H3 pointer")); return -1; } memmove(&h3Ptr, phBuf + 0x2B4, 4); h3Off = uint64_t(SBig(h3Ptr)) << 2; } uint64_t dataOff; { uint32_t dataPtr; if (0x2B8 + 4 > phSz) { LogModule.report(logvisor::Error, _S("unable to read data pointer")); return -1; } memmove(&dataPtr, phBuf + 0x2B8, 4); dataOff = uint64_t(SBig(dataPtr)) << 2; } m_userOffset = dataOff; std::unique_ptr tmdData(new uint8_t[tmdSz]); { if (0x2C0 + tmdSz > phSz) { LogModule.report(logvisor::Error, _S("unable to read TMD")); return -1; } memmove(tmdData.get(), phBuf + 0x2C0, tmdSz); } /* Copy partition head up to H3 table */ std::unique_ptr ws = m_parent.getFileIO().beginWriteStream(m_baseOffset); if (!ws) return -1; size_t copySz = std::min(phSz, size_t(h3Off)); ws->write(phBuf, copySz); size_t remCopy = (h3Off > phSz) ? (h3Off - copySz) : 0; for (size_t i=0 ; iwrite("", 1); /* Prepare crypto pass */ m_aes->setKey(COMMON_KEYS[ccIdx]); m_aes->decrypt(tkeyiv, tkey, tkey, 16); m_aes->setKey(tkey); { /* Assemble partition data */ std::unique_ptr cws = beginWriteStream(0x1F0000); if (!cws) return -1; if (!contentFunc(*cws)) return -1; /* Pad out user area to nearest cleartext sector */ m_curUser = cws->position(); uint64_t curUserRem = m_curUser % 0x1F0000; if (curUserRem) { curUserRem = 0x1F0000 - curUserRem; for (size_t i=0 ; iwrite("\xff", 1); m_curUser += curUserRem; } /* Begin crypto write and add content header */ cws = beginWriteStream(0); if (!cws) return -1; Header header(m_gameID, m_gameTitle.c_str(), true, 0, 0, 0); header.write(*cws); /* Compute boot table members and write */ size_t fstOff = 0x2440 + ROUND_UP_32(apploaderSz); size_t fstSz = sizeof(FSTNode) * m_buildNodes.size(); fstSz += m_buildNameOff; fstSz = ROUND_UP_32(fstSz); if (fstOff + fstSz >= 0x1F0000) { LogModule.report(logvisor::Error, "FST flows into user area (one or the other is too big)"); return -1; } cws->write(nullptr, 0x420 - sizeof(Header)); uint32_t vals[4]; vals[0] = SBig(uint32_t(m_dolOffset >> uint64_t(2))); vals[1] = SBig(uint32_t(fstOff >> uint64_t(2))); vals[2] = SBig(uint32_t(fstSz)); vals[3] = SBig(uint32_t(fstSz)); cws->write(vals, 16); size_t xferSz = 0; if (!apploaderFunc(*cws, xferSz)) return -1; size_t fstOffRel = fstOff - 0x2440; if (xferSz > fstOffRel) { LogModule.report(logvisor::Error, "apploader unexpectedly flows into FST"); return -1; } for (size_t i=0 ; iwrite("\xff", 1); /* Write FST */ cws->write(m_buildNodes.data(), m_buildNodes.size() * sizeof(FSTNode)); for (const std::string& str : m_buildNames) cws->write(str.data(), str.size()+1); } /* Write new crypto content size */ uint64_t groupCount = m_curUser / 0x1F0000; uint64_t cryptContentSize = (groupCount * 0x200000) >> uint64_t(2); uint32_t cryptContentSizeBig = SBig(uint32_t(cryptContentSize)); ws = m_parent.getFileIO().beginWriteStream(m_baseOffset + 0x2BC); if (!ws) return -1; ws->write(&cryptContentSizeBig, 0x4); /* Write new H3 */ ws = m_parent.getFileIO().beginWriteStream(m_baseOffset + h3Off); if (!ws) return -1; ws->write(m_h3, 0x18000); /* Compute content hash and replace in TMD */ sha1nfo sha; sha1_init(&sha); sha1_write(&sha, (char*)m_h3, 0x18000); memmove(tmdData.get() + 0x1F4, sha1_result(&sha), 20); /* Same for content size */ uint64_t contentSize = groupCount * 0x1F0000; uint64_t contentSizeBig = SBig(contentSize); memmove(tmdData.get() + 0x1EC, &contentSizeBig, 8); /* Zero-out TMD signature to simplify brute-force */ memset(tmdData.get() + 0x4, 0, 0x100); /* Brute-force zero-starting hash */ size_t tmdCheckSz = tmdSz - 0x140; struct BFWindow { uint64_t word[7]; }* bfWindow = (BFWindow*)(tmdData.get() + 0x19A); bool good = false; uint64_t attempts = 0; SystemString bfName(_S("Brute force attempts")); ++m_parent.m_progressIdx; for (int w=0 ; w<7 ; ++w) { for (uint64_t i=0 ; iword[w] = i; sha1_init(&sha); sha1_write(&sha, (char*)(tmdData.get() + 0x140), tmdCheckSz); uint8_t* hash = sha1_result(&sha); ++attempts; if (hash[0] == 0) { good = true; break; } m_parent.m_progressCB(m_parent.m_progressIdx, bfName, attempts); } if (good) break; } m_parent.m_progressCB(m_parent.m_progressIdx, bfName, attempts); ws = m_parent.getFileIO().beginWriteStream(m_baseOffset + 0x2C0); if (!ws) return -1; ws->write(tmdData.get(), tmdSz); return m_baseOffset + dataOff + groupCount * 0x200000; } uint64_t buildFromDirectory(const SystemChar* dirIn, const SystemChar* dolIn, const SystemChar* apploaderIn, const SystemChar* partHeadIn) { std::unique_ptr ph = NewFileIO(partHeadIn); size_t phSz = ph->size(); std::unique_ptr phBuf(new uint8_t[phSz]); { auto rs = ph->beginReadStream(); if (!rs) return -1; rs->read(phBuf.get(), phSz); } /* Get Apploader Size */ Sstat theStat; if (Stat(apploaderIn, &theStat)) { LogModule.report(logvisor::Error, _S("unable to stat %s"), apploaderIn); return -1; } return _build( [this, dirIn, dolIn, apploaderIn](IPartWriteStream& cws) -> bool { return DiscBuilderBase::PartitionBuilderBase::buildFromDirectory(cws, dirIn, dolIn, apploaderIn); }, [this, apploaderIn](IPartWriteStream& cws, size_t& xferSz) -> bool { cws.write(nullptr, 0x2440 - 0x430); std::unique_ptr rs = NewFileIO(apploaderIn)->beginReadStream(); if (!rs) return false; char buf[8192]; SystemString apploaderName(apploaderIn); ++m_parent.m_progressIdx; while (true) { size_t rdSz = rs->read(buf, 8192); if (!rdSz) break; cws.write(buf, rdSz); xferSz += rdSz; if (0x2440 + xferSz >= 0x1F0000) { LogModule.report(logvisor::Error, "apploader flows into user area (one or the other is too big)"); return false; } m_parent.m_progressCB(m_parent.m_progressIdx, apploaderName, xferSz); } return true; }, phBuf.get(), phSz, theStat.st_size); } bool mergeFromDirectory(const PartitionWii* partIn, const SystemChar* dirIn) { size_t phSz; std::unique_ptr phBuf = partIn->readPartitionHeaderBuf(phSz); return _build( [this, partIn, dirIn](IPartWriteStream& cws) -> bool { return DiscBuilderBase::PartitionBuilderBase::mergeFromDirectory(cws, partIn, dirIn); }, [this, partIn](IPartWriteStream& cws, size_t& xferSz) -> bool { cws.write(nullptr, 0x2440 - 0x430); std::unique_ptr apploaderBuf = partIn->getApploaderBuf(); size_t apploaderSz = partIn->getApploaderSize(); SystemString apploaderName(_S("")); ++m_parent.m_progressIdx; cws.write(apploaderBuf.get(), apploaderSz); xferSz += apploaderSz; if (0x2440 + xferSz >= 0x1F0000) { LogModule.report(logvisor::Error, "apploader flows into user area (one or the other is too big)"); return false; } m_parent.m_progressCB(m_parent.m_progressIdx, apploaderName, xferSz); return true; }, phBuf.get(), phSz, partIn->getApploaderSize()); } }; bool DiscBuilderWii::buildFromDirectory(const SystemChar* dirIn, const SystemChar* dolIn, const SystemChar* apploaderIn, const SystemChar* partHeadIn) { PartitionBuilderWii& pb = static_cast(*m_partitions[0]); uint64_t filledSz = pb.m_baseOffset; if (!m_fileIO->beginWriteStream()) return false; if (!CheckFreeSpace(m_outPath.c_str(), m_discCapacity)) { LogModule.report(logvisor::Error, _S("not enough free disk space for %s"), m_outPath.c_str()); return false; } ++m_progressIdx; m_progressCB(m_progressIdx, _S("Preallocating image"), -1); std::unique_ptr ws = m_fileIO->beginWriteStream(m_discCapacity - 1); if (!ws) return false; ws->write("", 1); /* Assemble image */ filledSz = pb.buildFromDirectory(dirIn, dolIn, apploaderIn, partHeadIn); if (filledSz == -1) return false; else if (filledSz >= uint64_t(m_discCapacity)) { LogModule.report(logvisor::Error, "data partition exceeds disc capacity"); return false; } ++m_progressIdx; m_progressCB(m_progressIdx, _S("Finishing Disc"), -1); /* Populate disc header */ ws = m_fileIO->beginWriteStream(0); if (!ws) return false; Header header(pb.getGameID(), pb.getGameTitle().c_str(), true, 0, 0, 0); header.write(*ws); /* Populate partition info */ ws = m_fileIO->beginWriteStream(0x40000); if (!ws) return false; uint32_t vals[2] = {SBig(uint32_t(1)), SBig(uint32_t(0x40020 >> uint64_t(2)))}; ws->write(vals, 8); ws = m_fileIO->beginWriteStream(0x40020); if (!ws) return false; vals[0] = SBig(uint32_t(pb.m_baseOffset >> uint64_t(2))); ws->write(vals, 4); /* Populate region info */ ws = m_fileIO->beginWriteStream(0x4E000); if (!ws) return false; const char* gameID = pb.getGameID(); if (gameID[3] == 'P') vals[0] = SBig(uint32_t(2)); else if (gameID[3] == 'J') vals[0] = SBig(uint32_t(0)); else vals[0] = SBig(uint32_t(1)); ws->write(vals, 4); /* Make disc unrated */ ws = m_fileIO->beginWriteStream(0x4E010); if (!ws) return false; for (int i=0 ; i<16 ; ++i) ws->write("\x80", 1); /* Fill image to end */ ws = m_fileIO->beginWriteStream(filledSz); if (!ws) return false; uint8_t fillBuf[512]; memset(fillBuf, 0xff, 512); for (size_t i=m_discCapacity-filledSz ; i>0 ;) { if (i >= 512) { ws->write(fillBuf, 512); i -= 512; continue; } ws->write(fillBuf, i); break; } return true; } uint64_t DiscBuilderWii::CalculateTotalSizeRequired(const SystemChar* dirIn, const SystemChar* dolIn, bool& dualLayer) { uint64_t sz = DiscBuilderBase::PartitionBuilderBase::CalculateTotalSizeBuild(dolIn, dirIn); if (sz == -1) return -1; auto szDiv = std::lldiv(sz, 0x1F0000); if (szDiv.rem) ++szDiv.quot; sz = szDiv.quot * 0x200000; sz += 0x200000; dualLayer = (sz > 0x118240000); if (sz > 0x1FB4E0000) { LogModule.report(logvisor::Error, _S("disc capacity exceeded [%" PRIu64 " / %" PRIu64 "]"), sz, 0x1FB4E0000); return -1; } return sz; } DiscBuilderWii::DiscBuilderWii(const SystemChar* outPath, const char gameID[6], const char* gameTitle, bool dualLayer, FProgress progressCB) : DiscBuilderBase(outPath, dualLayer ? 0x1FB4E0000 : 0x118240000, progressCB), m_dualLayer(dualLayer) { PartitionBuilderWii* partBuilder = new PartitionBuilderWii(*this, PartitionBuilderBase::Kind::Data, gameID, gameTitle, 0x200000); m_partitions.emplace_back(partBuilder); } DiscMergerWii::DiscMergerWii(const SystemChar* outPath, DiscWii& sourceDisc, bool dualLayer, FProgress progressCB) : m_sourceDisc(sourceDisc), m_builder(sourceDisc.makeMergeBuilder(outPath, dualLayer, progressCB)) {} bool DiscMergerWii::mergeFromDirectory(const SystemChar* dirIn) { PartitionBuilderWii& pb = static_cast(*m_builder.m_partitions[0]); uint64_t filledSz = pb.m_baseOffset; if (!m_builder.m_fileIO->beginWriteStream()) return false; if (!CheckFreeSpace(m_builder.m_outPath.c_str(), m_builder.m_discCapacity)) { LogModule.report(logvisor::Error, _S("not enough free disk space for %s"), m_builder.m_outPath.c_str()); return false; } ++m_builder.m_progressIdx; m_builder.m_progressCB(m_builder.m_progressIdx, _S("Preallocating image"), -1); std::unique_ptr ws = m_builder.m_fileIO->beginWriteStream(m_builder.m_discCapacity - 1); if (!ws) return false; ws->write("", 1); /* Assemble image */ filledSz = pb.mergeFromDirectory(static_cast(m_sourceDisc.getDataPartition()), dirIn); if (filledSz == -1) return false; else if (filledSz >= uint64_t(m_builder.m_discCapacity)) { LogModule.report(logvisor::Error, "data partition exceeds disc capacity"); return false; } ++m_builder.m_progressIdx; m_builder.m_progressCB(m_builder.m_progressIdx, _S("Finishing Disc"), -1); /* Populate disc header */ ws = m_builder.m_fileIO->beginWriteStream(0); if (!ws) return false; m_sourceDisc.getHeader().write(*ws); /* Populate partition info */ ws = m_builder.m_fileIO->beginWriteStream(0x40000); if (!ws) return false; uint32_t vals[2] = {SBig(uint32_t(1)), SBig(uint32_t(0x40020 >> uint64_t(2)))}; ws->write(vals, 8); ws = m_builder.m_fileIO->beginWriteStream(0x40020); if (!ws) return false; vals[0] = SBig(uint32_t(pb.m_baseOffset >> uint64_t(2))); ws->write(vals, 4); /* Populate region info */ ws = m_builder.m_fileIO->beginWriteStream(0x4E000); if (!ws) return false; const char* gameID = pb.getGameID(); if (gameID[3] == 'P') vals[0] = SBig(uint32_t(2)); else if (gameID[3] == 'J') vals[0] = SBig(uint32_t(0)); else vals[0] = SBig(uint32_t(1)); ws->write(vals, 4); /* Make disc unrated */ ws = m_builder.m_fileIO->beginWriteStream(0x4E010); if (!ws) return false; for (int i=0 ; i<16 ; ++i) ws->write("\x80", 1); /* Fill image to end */ ws = m_builder.m_fileIO->beginWriteStream(filledSz); if (!ws) return false; uint8_t fillBuf[512]; memset(fillBuf, 0xff, 512); for (size_t i=m_builder.m_discCapacity-filledSz ; i>0 ;) { if (i >= 512) { ws->write(fillBuf, 512); i -= 512; continue; } ws->write(fillBuf, i); break; } return true; } uint64_t DiscMergerWii::CalculateTotalSizeRequired(DiscWii& sourceDisc, const SystemChar* dirIn, bool& dualLayer) { uint64_t sz = DiscBuilderBase::PartitionBuilderBase::CalculateTotalSizeMerge( sourceDisc.getDataPartition(), dirIn); if (sz == -1) return -1; auto szDiv = std::lldiv(sz, 0x1F0000); if (szDiv.rem) ++szDiv.quot; sz = szDiv.quot * 0x200000; sz += 0x200000; dualLayer = (sz > 0x118240000); if (sz > 0x1FB4E0000) { LogModule.report(logvisor::Error, _S("disc capacity exceeded [%" PRIu64 " / %" PRIu64 "]"), sz, 0x1FB4E0000); return -1; } return sz; } }