#pragma once #include #include #include #include "zeus/CVector2f.hpp" #include "zeus/Global.hpp" #include "zeus/Math.hpp" namespace zeus { class CVector3d; class CRelAngle; class CVector3f { public: zeus::simd mSimd; constexpr CVector3f() : mSimd() {} template constexpr CVector3f(const simd& s) : mSimd(s) {} inline CVector3f(const CVector3d& vec); explicit constexpr CVector3f(float xyz) : mSimd(xyz) {} void assign(float x, float y, float z) { mSimd.set(x, y, z); } constexpr CVector3f(float x, float y, float z) : mSimd(x, y, z) {} constexpr CVector3f(const float* floats) : mSimd(floats[0], floats[1], floats[2]) {} CVector3f(const CVector2f& other, float z = 0.f) { mSimd = other.mSimd; mSimd[2] = z; } [[nodiscard]] CVector2f toVec2f() const { return CVector2f(mSimd); } [[nodiscard]] bool operator==(const CVector3f& rhs) const { const auto mask = mSimd == rhs.mSimd; return mask[0] && mask[1] && mask[2]; } [[nodiscard]] bool operator!=(const CVector3f& rhs) const { return !(*this == rhs); } [[nodiscard]] simd::mask_type operator>(const CVector3f& rhs) const { return mSimd > rhs.mSimd; } [[nodiscard]] simd::mask_type operator>=(const CVector3f& rhs) const { return mSimd >= rhs.mSimd; } [[nodiscard]] simd::mask_type operator<(const CVector3f& rhs) const { return mSimd < rhs.mSimd; } [[nodiscard]] simd::mask_type operator<=(const CVector3f& rhs) const { return mSimd <= rhs.mSimd; } [[nodiscard]] CVector3f operator+(const CVector3f& rhs) const { return mSimd + rhs.mSimd; } [[nodiscard]] CVector3f operator-(const CVector3f& rhs) const { return mSimd - rhs.mSimd; } [[nodiscard]] CVector3f operator-() const { return -mSimd; } [[nodiscard]] CVector3f operator*(const CVector3f& rhs) const { return mSimd * rhs.mSimd; } [[nodiscard]] CVector3f operator/(const CVector3f& rhs) const { return mSimd / rhs.mSimd; } [[nodiscard]] CVector3f operator+(float val) const { return mSimd + val; } [[nodiscard]] CVector3f operator-(float val) const { return mSimd - val; } [[nodiscard]] CVector3f operator*(float val) const { return mSimd * val; } [[nodiscard]] CVector3f operator/(float val) const { return mSimd / val; } const CVector3f& operator+=(const CVector3f& rhs) { mSimd += rhs.mSimd; return *this; } const CVector3f& operator-=(const CVector3f& rhs) { mSimd -= rhs.mSimd; return *this; } const CVector3f& operator*=(const CVector3f& rhs) { mSimd *= rhs.mSimd; return *this; } const CVector3f& operator/=(const CVector3f& rhs) { mSimd /= rhs.mSimd; return *this; } void normalize() { float mag = 1.f / magnitude(); *this *= CVector3f(mag); } [[nodiscard]] CVector3f normalized() const { float mag = 1.f / magnitude(); return *this * mag; } [[nodiscard]] CVector3f cross(const CVector3f& rhs) const { return {y() * rhs.z() - z() * rhs.y(), z() * rhs.x() - x() * rhs.z(), x() * rhs.y() - y() * rhs.x()}; } [[nodiscard]] float dot(const CVector3f& rhs) const { return mSimd.dot3(rhs.mSimd); } [[nodiscard]] float magSquared() const { return mSimd.dot3(mSimd); } [[nodiscard]] float magnitude() const { return std::sqrt(magSquared()); } [[nodiscard]] bool isNotInf() const { return !(std::isinf(x()) || std::isinf(y()) || std::isinf(z())); } [[nodiscard]] bool isMagnitudeSafe() const { return isNotInf() && magSquared() >= 9.9999994e-29; } [[nodiscard]] bool isNaN() const { return std::isnan(x()) || std::isnan(y()) || std::isnan(z()); } void zeroOut() { mSimd.broadcast(0.f); } void splat(float xyz) { mSimd.broadcast(xyz); } [[nodiscard]] static float getAngleDiff(const CVector3f& a, const CVector3f& b); [[nodiscard]] static CVector3f lerp(const CVector3f& a, const CVector3f& b, float t) { return zeus::simd(1.f - t) * a.mSimd + b.mSimd * zeus::simd(t); } [[nodiscard]] static CVector3f nlerp(const CVector3f& a, const CVector3f& b, float t) { return lerp(a, b, t).normalized(); } [[nodiscard]] static CVector3f slerp(const CVector3f& a, const CVector3f& b, CRelAngle clampAngle); [[nodiscard]] bool isNormalized() const { return std::fabs(1.f - magSquared()) <= FLT_EPSILON; } [[nodiscard]] bool canBeNormalized() const { if (std::isinf(x()) || std::isinf(y()) || std::isinf(z())) return false; return !(std::fabs(x()) < FLT_EPSILON && std::fabs(y()) < FLT_EPSILON && std::fabs(z()) < FLT_EPSILON); } [[nodiscard]] bool isZero() const { return mSimd[0] == 0.f && mSimd[1] == 0.f && mSimd[2] == 0.f; } void scaleToLength(float newLength) { float length = magSquared(); if (length < FLT_EPSILON) { mSimd[0] = newLength, mSimd[1] = 0.f, mSimd[2] = 0.f; return; } length = std::sqrt(length); float scalar = newLength / length; *this *= CVector3f(scalar); } [[nodiscard]] CVector3f scaledToLength(float newLength) const { CVector3f v = *this; v.scaleToLength(newLength); return v; } [[nodiscard]] bool isEqu(const CVector3f& other, float epsilon = FLT_EPSILON) const { const CVector3f diffVec = other - *this; return (diffVec.x() <= epsilon && diffVec.y() <= epsilon && diffVec.z() <= epsilon); } [[nodiscard]] simd::reference operator[](size_t idx) { assert(idx < 3); return mSimd[idx]; } [[nodiscard]] float operator[](size_t idx) const { assert(idx < 3); return mSimd[idx]; } [[nodiscard]] float x() const { return mSimd[0]; } [[nodiscard]] float y() const { return mSimd[1]; } [[nodiscard]] float z() const { return mSimd[2]; } [[nodiscard]] simd::reference x() { return mSimd[0]; } [[nodiscard]] simd::reference y() { return mSimd[1]; } [[nodiscard]] simd::reference z() { return mSimd[2]; } [[nodiscard]] static inline CVector3f radToDeg(const CVector3f& rad); [[nodiscard]] static inline CVector3f degToRad(const CVector3f& deg); }; constexpr inline CVector3f skOne3f(1.f); constexpr inline CVector3f skNegOne3f(-1.f); constexpr inline CVector3f skZero3f(0.f); constexpr inline CVector3f skForward(0.f, 1.f, 0.f); constexpr inline CVector3f skBack(0.f, -1.f, 0.f); constexpr inline CVector3f skLeft(-1.f, 0.f, 0.f); constexpr inline CVector3f skRight(1.f, 0.f, 0.f); constexpr inline CVector3f skUp(0.f, 0.f, 1.f); constexpr inline CVector3f skDown(0.f, 0.f, -1.f); constexpr inline CVector3f skRadToDegVec(180.f / M_PIF); constexpr inline CVector3f skDegToRadVec(M_PIF / 180.f); [[nodiscard]] inline CVector3f operator+(float lhs, const CVector3f& rhs) { return zeus::simd(lhs) + rhs.mSimd; } [[nodiscard]] inline CVector3f operator-(float lhs, const CVector3f& rhs) { return zeus::simd(lhs) - rhs.mSimd; } [[nodiscard]] inline CVector3f operator*(float lhs, const CVector3f& rhs) { return zeus::simd(lhs) * rhs.mSimd; } [[nodiscard]] inline CVector3f operator/(float lhs, const CVector3f& rhs) { return zeus::simd(lhs) / rhs.mSimd; } inline CVector3f CVector3f::radToDeg(const CVector3f& rad) { return rad * skRadToDegVec; } inline CVector3f CVector3f::degToRad(const CVector3f& deg) { return deg * skDegToRadVec; } } // namespace zeus