#ifndef CVECTOR2f_HPP #define CVECTOR2f_HPP #include "Global.hpp" #include "Math.hpp" #include "TVectorUnion.hpp" #if ZE_ATHENA_TYPES #include #endif #include #include namespace Zeus { class alignas(16) CVector2f { #if __atdna__ float clangVec __attribute__((__vector_size__(8))); #endif public: ZE_DECLARE_ALIGNED_ALLOCATOR(); union { struct { float x, y; }; float v[4]; #if __SSE__ __m128 mVec128; #endif }; inline CVector2f() {zeroOut();} #if __SSE__ CVector2f(const __m128& mVec128) : mVec128(mVec128) {v[2] = 0.0f; v[3] = 0.0f;} #endif #if ZE_ATHENA_TYPES CVector2f(const atVec2f& vec) #if __SSE__ : mVec128(vec.mVec128){} #else { x = vec.vec[0], y = vec.vec[1], v[2] = 0.0f, v[3] = 0.0f; } #endif operator atVec2f() { atVec2f ret; #if __SSE__ ret.mVec128 = mVec128; #else ret.vec = v; #endif return ret; } operator atVec2f() const { atVec2f ret; #if __SSE__ ret.mVec128 = mVec128; #else ret.vec = v; #endif return ret; } void read(Athena::io::IStreamReader& input) { x = input.readFloat(); y = input.readFloat(); v[2] = 0.0f; v[3] = 0.0f; } CVector2f(Athena::io::IStreamReader& input) { read(input); } #endif CVector2f(float xy) {splat(xy);} void assign(float x, float y) {v[0] = x; v[1] = y; v[2] = 0; v[3] = 0.0;} CVector2f(float x, float y) {assign(x, y);} inline bool operator ==(const CVector2f& rhs) const {return (x == rhs.x && y == rhs.y);} inline bool operator !=(const CVector2f& rhs) const {return !(*this == rhs);} inline bool operator <(const CVector2f& rhs) const { #if __SSE__ TVectorUnion vec; vec.mVec128 = _mm_cmplt_ps(mVec128, rhs.mVec128); return (vec.v[0] != 0 || vec.v[1] != 0); #else return (x < rhs.x || y < rhs.y); #endif } inline bool operator <=(const CVector2f& rhs) const { #if __SSE__ TVectorUnion vec; vec.mVec128 = _mm_cmple_ps(mVec128, rhs.mVec128); return (vec.v[0] != 0 || vec.v[1] != 0); #else return (x <= rhs.x || y <= rhs.y); #endif } inline bool operator >(const CVector2f& rhs) const { #if __SSE__ TVectorUnion vec; vec.mVec128 = _mm_cmpgt_ps(mVec128, rhs.mVec128); return (vec.v[0] != 0 || vec.v[1] != 0); #else return (x > rhs.x || y > rhs.y); #endif } inline bool operator >=(const CVector2f& rhs) const { #if __SSE__ TVectorUnion vec; vec.mVec128 = _mm_cmpge_ps(mVec128, rhs.mVec128); return (vec.v[0] != 0 || vec.v[1] != 0); #else return (x >= rhs.x || y >= rhs.y); #endif } inline CVector2f operator+(const CVector2f& rhs) const { #if __SSE__ return CVector2f(_mm_add_ps(mVec128, rhs.mVec128)); #else return CVector2f(x + rhs.x, y + rhs.y); #endif } inline CVector2f operator-(const CVector2f& rhs) const { #if __SSE__ return CVector2f(_mm_sub_ps(mVec128, rhs.mVec128)); #else return CVector2f(x - rhs.x, y - rhs.y); #endif } inline CVector2f operator-() const { #if __SSE__ return CVector2f(_mm_sub_ps(_mm_xor_ps(mVec128, mVec128), mVec128)); #else return CVector2f(-x, -y); #endif } inline CVector2f operator*(const CVector2f& rhs) const { #if __SSE__ return CVector2f(_mm_mul_ps(mVec128, rhs.mVec128)); #else return CVector2f(x * rhs.x, y * rhs.y); #endif } inline CVector2f operator/(const CVector2f& rhs) const { #if __SSE__ return CVector2f(_mm_div_ps(mVec128, rhs.mVec128)); #else return CVector2f(x / rhs.x, y / rhs.y); #endif } inline CVector2f operator+(float val) const { #if __SSE__ TVectorUnion splat = {{val, val, 0.0, 0.0}}; return CVector2f(_mm_add_ps(mVec128, splat.mVec128)); #else return CVector2f(x + val, y + val); #endif } inline CVector2f operator-(float val) const { #if __SSE__ TVectorUnion splat = {{val, val, 0.0, 0.0}}; return CVector2f(_mm_sub_ps(mVec128, splat.mVec128)); #else return CVector2f(x - val, y - val); #endif } inline CVector2f operator*(float val) const { #if __SSE__ TVectorUnion splat = {{val, val, 0.0, 0.0}}; return CVector2f(_mm_mul_ps(mVec128, splat.mVec128)); #else return CVector2f(x * val, y * val); #endif } inline CVector2f operator/(float val) const { #if __SSE__ TVectorUnion splat = {{val, val, val, 0.0}}; return CVector2f(_mm_div_ps(mVec128, splat.mVec128)); #else return CVector2f(x / val, y / val); #endif } inline const CVector2f& operator +=(const CVector2f& rhs) { #if __SSE__ mVec128 = _mm_add_ps(mVec128, rhs.mVec128); #else x += rhs.x; y += rhs.y; #endif return *this; } inline const CVector2f& operator -=(const CVector2f& rhs) { #if __SSE__ mVec128 = _mm_sub_ps(mVec128, rhs.mVec128); #else x -= rhs.x; y -= rhs.y; #endif return *this; } inline const CVector2f& operator *=(const CVector2f& rhs) { #if __SSE__ mVec128 = _mm_mul_ps(mVec128, rhs.mVec128); #else x *= rhs.x; y *= rhs.y; #endif return *this; } inline const CVector2f& operator /=(const CVector2f& rhs) { #if __SSE__ mVec128 = _mm_div_ps(mVec128, rhs.mVec128); #else x /= rhs.x; y /= rhs.y; #endif return *this; } inline void normalize() { float mag = magnitude(); mag = 1.0 / mag; *this *= mag; } inline CVector2f normalized() const { float mag = magnitude(); mag = 1.0 / mag; return *this * mag; } inline float cross(const CVector2f& rhs) const { return (x * rhs.y) - (y * rhs.x); } inline float dot(const CVector2f& rhs) const { #if __SSE__ TVectorUnion result; #if __SSE4_1__ if (cpuFeatures().SSE41 || cpuFeatures().SSE42) { result.mVec128 = _mm_dp_ps(mVec128, rhs.mVec128, 0x31); return result.v[0]; } #endif result.mVec128 = _mm_mul_ps(mVec128, rhs.mVec128); return result.v[0] + result.v[1]; #else return (x * rhs.x) + (y * rhs.y); #endif } inline float magSquared() const { #if __SSE__ TVectorUnion result; #if __SSE4_1__ || __SSE4_2__ if (cpuFeatures().SSE41 || cpuFeatures().SSE42) { result.mVec128 = _mm_dp_ps(mVec128, mVec128, 0x31); return result.v[0]; } #endif result.mVec128 = _mm_mul_ps(mVec128, mVec128); return result.v[0] + result.v[1]; #else return x*x + y*y; #endif } inline float magnitude() const { return Math::sqrtF(magSquared()); } inline void zeroOut() { #if __SSE__ mVec128 = _mm_xor_ps(mVec128, mVec128); #else v[0] = 0.0; v[1] = 0.0; v[2] = 0.0; v[3] = 0.0; #endif } inline void splat(float xy) { #if __SSE__ TVectorUnion splat = {{xy, xy, 0.0f, 0.0f}}; mVec128 = splat.mVec128; #else v[0] = xy; v[1] = xy; v[2] = 0.0f; v[3] = 0.0f; #endif } static float getAngleDiff(const CVector2f& a, const CVector2f& b); static inline CVector2f lerp(const CVector2f& a, const CVector2f& b, float t) { return (a + (b - a) * t); } static inline CVector2f nlerp(const CVector2f& a, const CVector2f& b, float t) { return lerp(a, b, t).normalized(); } static CVector2f slerp(const CVector2f& a, const CVector2f& b, float t); inline bool canBeNormalized() const { const float epsilon = 1.1920929e-7f; if (fabs(x) >= epsilon || fabs(y) >= epsilon) return true; return false; } inline bool isNormalized() const { return !canBeNormalized(); } inline bool isZero() const { return magSquared() <= 1.1920929e-7f; } inline float& operator[](size_t idx) {return (&x)[idx];} inline const float& operator[](size_t idx) const {return (&x)[idx];} static const CVector2f skOne; static const CVector2f skNegOne; static const CVector2f skZero; }; static inline CVector2f operator+(float lhs, const CVector2f& rhs) { #if __SSE__ TVectorUnion splat = {{lhs, lhs, 0.0, 0.0}}; return CVector2f(_mm_add_ps(splat.mVec128, rhs.mVec128)); #else return CVector2f(lhs + rhs.x, lhs + rhs.y); #endif } static inline CVector2f operator-(float lhs, const CVector2f& rhs) { #if __SSE__ TVectorUnion splat = {{lhs, lhs, 0.0, 0.0}}; return CVector2f(_mm_sub_ps(splat.mVec128, rhs.mVec128)); #else return CVector2f(lhs - rhs.x, lhs - rhs.y); #endif } static inline CVector2f operator*(float lhs, const CVector2f& rhs) { #if __SSE__ TVectorUnion splat = {{lhs, lhs, 0.0, 0.0}}; return CVector2f(_mm_mul_ps(splat.mVec128, rhs.mVec128)); #else return CVector2f(lhs * rhs.x, lhs * rhs.y); #endif } static inline CVector2f operator/(float lhs, const CVector2f& rhs) { #if __SSE__ TVectorUnion splat = {{lhs, lhs, 0.0, 0.0}}; return CVector2f(_mm_div_ps(splat.mVec128, rhs.mVec128)); #else return CVector2f(lhs / rhs.x, lhs / rhs.y); #endif } } #endif // CVECTOR2F_HPP