#ifndef CTRANSFORM_HPP #define CTRANSFORM_HPP #include "Global.hpp" #include "CMatrix3f.hpp" #include "CMatrix4f.hpp" #include "CVector3f.hpp" #include "CQuaternion.hpp" namespace Zeus { class alignas(16) CTransform { public: ZE_DECLARE_ALIGNED_ALLOCATOR(); CTransform() : m_basis(false) {} CTransform(const CMatrix3f& basis, const CVector3f& offset=CVector3f::skZero) : m_basis(basis), m_origin(offset) {} #if ZE_ATHENA_TYPES CTransform(const atVec4f* mtx) : m_basis(mtx[0], mtx[1], mtx[2]), m_origin(mtx[0].vec[3], mtx[1].vec[3], mtx[2].vec[3]) {} #endif static inline CTransform Identity() { return CTransform(CMatrix3f::skIdentityMatrix3f); } inline CTransform operator*(const CTransform& rhs) const {return CTransform(m_basis * rhs.m_basis, m_origin + (m_basis * rhs.m_origin));} inline CTransform inverse() const { CMatrix3f inv = m_basis.inverted(); return CTransform(inv, inv * -m_origin); } static inline CTransform Translate(const CVector3f& position) { return {CMatrix3f::skIdentityMatrix3f, position}; } static inline CTransform Translate(float x, float y, float z) { return Translate({x, y, z}); } inline CTransform operator+(const CVector3f& other) { return CTransform(m_basis, m_origin + other); } inline CTransform& operator+=(const CVector3f& other) { m_origin += other; return *this; } inline CTransform operator-(const CVector3f& other) { return CTransform(m_basis, m_origin - other); } inline CTransform& operator-=(const CVector3f& other) { m_origin -= other; return *this; } inline void rotate(const CVector3f& euler) { *this = *this * CMatrix3f(CQuaternion(euler)); } static inline CTransform RotateX(float theta) { float sinT = sinf(theta); float cosT = cosf(theta); return CTransform(CMatrix3f({1.f, 0.f, 0.f, 0.f}, {0.f, cosT, sinT, 0.f}, {0.f, -sinT, cosT, 0.f})); } static inline CTransform RotateY(float theta) { float sinT = sinf(theta); float cosT = cosf(theta); return CTransform(CMatrix3f({cosT, 0.f, -sinT, 0.f}, {0.f, 1.f, 0.f, 0.f}, {sinT, 0.f, cosT, 0.f})); } static inline CTransform RotateZ(float theta) { float sinT = sinf(theta); float cosT = cosf(theta); return CTransform(CMatrix3f({cosT, sinT, 0.f, 0.f}, {-sinT, cosT, 0.f, 0.f}, {0.f, 0.f, 1.f, 0.f})); } inline void rotateLocalX(float theta) { float sinT = sinf(theta); float cosT = cosf(theta); Zeus::CVector3f b2 = m_basis[2] * sinT; Zeus::CVector3f b1 = m_basis[1] * sinT; Zeus::CVector3f cosV(cosT); m_basis[1] *= cosV; m_basis[2] *= cosV; m_basis[1] += b2; m_basis[2] -= b1; } inline void rotateLocalY(float theta) { float sinT = sinf(theta); float cosT = cosf(theta); Zeus::CVector3f b0 = m_basis[0] * sinT; Zeus::CVector3f b2 = m_basis[2] * sinT; Zeus::CVector3f cosV(cosT); m_basis[0] *= cosV; m_basis[2] *= cosV; m_basis[2] += b0; m_basis[0] -= b2; } inline void rotateLocalZ(float theta) { float sinT = sinf(theta); float cosT = cosf(theta); Zeus::CVector3f b0 = m_basis[0] * sinT; Zeus::CVector3f b1 = m_basis[1] * sinT; Zeus::CVector3f cosV(cosT); m_basis[0] *= cosV; m_basis[1] *= cosV; m_basis[0] += b1; m_basis[1] -= b0; } inline CVector3f transposeRotate(const CVector3f& in) const { return CVector3f(m_basis[0].dot(in), m_basis[1].dot(in), m_basis[2].dot(in)); } inline void scaleBy(float factor) { CTransform xfrm(CMatrix3f(CVector3f(factor, factor, factor))); *this = *this * xfrm; } static inline CTransform Scale(const CVector3f& factor) { return CTransform(CMatrix3f({factor.x, 0.f, 0.f, 0.f}, {0.f, factor.y, 0.f, 0.f}, {0.f, 0.f, factor.z, 0.f})); } static inline CTransform Scale(float x, float y, float z) { return CTransform(CMatrix3f({x, 0.f, 0.f, 0.f}, {0.f, y, 0.f, 0.f}, {0.f, 0.f, z, 0.f})); } static inline CTransform Scale(float factor) { return CTransform(CMatrix3f({factor, 0.f, 0.f, 0.f}, {0.f, factor, 0.f, 0.f}, {0.f, 0.f, factor, 0.f})); } inline void multiplyIgnoreTranslation(const CTransform& xfrm) { m_basis = m_basis*xfrm.m_basis; } inline CTransform getRotation() { CTransform ret = *this; ret.m_origin.zeroOut(); return ret; } void setRotation(const CMatrix3f& mat) { m_basis = mat; } void setRotation(const CTransform& xfrm) { setRotation(xfrm.m_basis); } /** * @brief buildMatrix3f Returns the stored matrix * buildMatrix3f is here for compliance with Retro's Math API * @return The Matrix (Neo, you are the one) */ inline CMatrix3f buildMatrix3f() { return m_basis; } inline CVector3f operator*(const CVector3f& other) const {return m_origin + m_basis * other;} inline CMatrix4f toMatrix4f() const { CMatrix4f ret(m_basis[0], m_basis[1], m_basis[2], m_origin); ret[0][3] = 0.0f; ret[1][3] = 0.0f; ret[2][3] = 0.0f; ret[3][3] = 1.0f; return ret; } static inline CTransform fromColumns(const CVector3f& m0, const CVector3f& m1, const CVector3f& m2, const CVector3f& m3) { CTransform ret; ret.m_basis[0][0] = m0[0]; ret.m_basis[0][1] = m1[0]; ret.m_basis[0][2] = m2[0]; ret.m_origin[0] = m3[0]; ret.m_basis[1][0] = m0[1]; ret.m_basis[1][1] = m1[1]; ret.m_basis[1][2] = m2[1]; ret.m_origin[1] = m3[1]; ret.m_basis[2][0] = m0[2]; ret.m_basis[2][1] = m1[2]; ret.m_basis[2][2] = m2[2]; ret.m_origin[2] = m3[2]; return ret; } CMatrix3f m_basis; CVector3f m_origin; }; static inline CTransform CTransformFromScaleVector(const CVector3f& scale) { return CTransform(CMatrix3f(scale)); } CTransform CTransformFromEditorEuler(const CVector3f& eulerVec); CTransform CTransformFromEditorEulers(const CVector3f& eulerVec, const CVector3f& origin); CTransform CTransformFromAxisAngle(const CVector3f& axis, float angle); } #endif // CTRANSFORM_HPP