#ifndef MATH_HPP #define MATH_HPP #undef min #undef max #ifndef NOMINMAX #define NOMINMAX 1 #endif #ifndef _USE_MATH_DEFINES #define _USE_MATH_DEFINES 1 #endif #include #include namespace Zeus { struct CPUInfo { const char cpuBrand [32] = {0}; const char cpuVendor[64] = {0}; const bool isIntel = false; const bool SSE1 = false; const bool SSE2 = false; const bool SSE3 = false; const bool SSSE3 = false; const bool SSE41 = false; const bool SSE42 = false; const bool SSE4a = false; const bool AESNI = false; }; /** * Detects CPU capabilities and returns true if SSE4.1 or SSE4.2 is available */ void detectCPU(); const CPUInfo& cpuFeatures(); class CVector3f; class CTransform; namespace Math { template inline T min(T a, T b) { return a < b ? a : b; } template inline T max(T a, T b) { return a > b ? a : b; } template inline T clamp(T a, T val, T b) {return max(a, min(b, val));} inline float radToDeg(float rad) {return rad * 180.f / M_PI;} inline float degToRad(float deg) {return deg * M_PI / 180;} extern const CVector3f kRadToDegVec; extern const CVector3f kDegToRadVec; CVector3f radToDeg(const CVector3f& rad); CVector3f degToRad(const CVector3f& deg); extern const CVector3f kUpVec; CTransform lookAt(const CVector3f& pos, const CVector3f& lookPos, const CVector3f& up=kUpVec); CVector3f baryToWorld(const CVector3f& p0, const CVector3f& p1, const CVector3f& p2, const CVector3f& bary); CVector3f getBezierPoint(const CVector3f& a, const CVector3f& b, const CVector3f& c, const CVector3f& d, float t); float getCatmullRomSplinePoint(float a, float b, float c, float d, float t); CVector3f getCatmullRomSplinePoint(const CVector3f& a, const CVector3f& b, const CVector3f& c, const CVector3f& d, float t); CVector3f getRoundCatmullRomSplinePoint(const CVector3f& a, const CVector3f& b, const CVector3f& c, const CVector3f& d, float t); inline float slowCosineR(float val) { return float(cos(val)); } inline float slowSineR(float val) { return float(sin(val)); } inline float slowTangentR(float val) { return float(tan(val)); } inline float arcSineR(float val) { return float(asin(val)); } inline float arcTangentR(float val) { return float(atan(val)); } inline float arcCosineR(float val) { return float(acos(val)); } inline float powF(float a, float b) { return float(exp(b * log(a))); } inline float floorF(float val) { return float(floor(val)); } inline float ceilingF(float val) { float tmp = floorF(val); return (tmp == val ? tmp : tmp + 1.0); } // Since round(double) doesn't exist in some implementations // we'll define our own inline double round(double val) { return (val < 0.0 ? ceilingF(val - 0.5) : floorF(val + 0.5)); } inline double powD(float a, float b) { return exp(b * log(a)); } double sqrtD(double val); inline double invSqrtD(double val) { return 1.0 / sqrtD(val); } inline float invSqrtF(float val) { return float(1.0 / sqrtD(val)); } inline float sqrtF(float val) { return float(sqrtD(val)); } float fastArcCosR(float val); float fastCosR(float val); float fastSinR(float val); int floorPowerOfTwo(int x); int ceilingPowerOfTwo(int x); template inline int PopCount(T x) { using U = std::make_unsigned_t::value, std::underlying_type_t, T>>; U cx = U(x); const U m1 = U(0x5555555555555555); //binary: 0101... const U m2 = U(0x3333333333333333); //binary: 00110011.. const U m4 = U(0x0f0f0f0f0f0f0f0f); //binary: 4 zeros, 4 ones ... const U h01 = U(0x0101010101010101); //the sum of 256 to the power of 0,1,2,3... cx -= (cx >> 1) & m1; //put count of each 2 bits into those 2 bits cx = (cx & m2) + ((cx >> 2) & m2); //put count of each 4 bits into those 4 bits cx = (cx + (cx >> 4)) & m4; //put count of each 8 bits into those 8 bits return (cx * h01) >> ((sizeof(U)-1)*8); //returns left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ... } } } #endif // MATH_HPP