mirror of https://github.com/AxioDL/zeus.git
169 lines
4.8 KiB
C++
169 lines
4.8 KiB
C++
#pragma once
|
|
|
|
#include <array>
|
|
#include <cassert>
|
|
|
|
#include "zeus/CVector3f.hpp"
|
|
#include "zeus/Global.hpp"
|
|
|
|
/* Column-major matrix class */
|
|
namespace zeus {
|
|
class CQuaternion;
|
|
|
|
class CMatrix3f {
|
|
public:
|
|
explicit constexpr CMatrix3f(bool zero = false) {
|
|
if (!zero) {
|
|
m[0][0] = 1.0;
|
|
m[1][1] = 1.0;
|
|
m[2][2] = 1.0;
|
|
}
|
|
}
|
|
|
|
constexpr CMatrix3f(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
|
|
: m{{{m00, m10, m20}, {m01, m11, m21}, {m02, m12, m22}}} {}
|
|
|
|
constexpr CMatrix3f(const CVector3f& scaleVec) {
|
|
m[0][0] = scaleVec[0];
|
|
m[1][1] = scaleVec[1];
|
|
m[2][2] = scaleVec[2];
|
|
}
|
|
|
|
constexpr CMatrix3f(float scale) : CMatrix3f(CVector3f(scale)) {}
|
|
|
|
constexpr CMatrix3f(const CVector3f& r0, const CVector3f& r1, const CVector3f& r2) : m{{r0, r1, r2}} {}
|
|
|
|
constexpr CMatrix3f(const CMatrix3f& other) = default;
|
|
|
|
constexpr CMatrix3f(const simd<float>& r0, const simd<float>& r1, const simd<float>& r2) {
|
|
m[0].mSimd = r0;
|
|
m[1].mSimd = r1;
|
|
m[2].mSimd = r2;
|
|
}
|
|
|
|
#if ZE_ATHENA_TYPES
|
|
|
|
constexpr CMatrix3f(const atVec4f& r0, const atVec4f& r1, const atVec4f& r2) {
|
|
m[0].mSimd = r0.simd;
|
|
m[1].mSimd = r1.simd;
|
|
m[2].mSimd = r2.simd;
|
|
}
|
|
|
|
void readBig(athena::io::IStreamReader& input) {
|
|
m[0][0] = input.readFloatBig();
|
|
m[1][0] = input.readFloatBig();
|
|
m[2][0] = input.readFloatBig();
|
|
m[0][1] = input.readFloatBig();
|
|
m[1][1] = input.readFloatBig();
|
|
m[2][1] = input.readFloatBig();
|
|
m[0][2] = input.readFloatBig();
|
|
m[1][2] = input.readFloatBig();
|
|
m[2][2] = input.readFloatBig();
|
|
}
|
|
|
|
[[nodiscard]] static CMatrix3f ReadBig(athena::io::IStreamReader& input) {
|
|
CMatrix3f ret;
|
|
ret.readBig(input);
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ZE_HSH_TYPES
|
|
|
|
operator hsh::float3x3() const {
|
|
return hsh::float3x3{hsh::float3(m[0]), hsh::float3(m[1]), hsh::float3(m[2])};
|
|
}
|
|
|
|
constexpr CMatrix3f(const hsh::float3x3& vec) : m{vec.cols[0], vec.cols[1], vec.cols[2]} {}
|
|
|
|
#endif
|
|
|
|
CMatrix3f(const CQuaternion& quat);
|
|
|
|
constexpr CMatrix3f& operator=(const CMatrix3f& other) = default;
|
|
|
|
[[nodiscard]] CVector3f operator*(const CVector3f& other) const {
|
|
return m[0].mSimd * other.mSimd.shuffle<0, 0, 0, 0>() + m[1].mSimd * other.mSimd.shuffle<1, 1, 1, 1>() +
|
|
m[2].mSimd * other.mSimd.shuffle<2, 2, 2, 2>();
|
|
}
|
|
|
|
[[nodiscard]] CVector3f& operator[](size_t i) {
|
|
assert(i < m.size());
|
|
return m[i];
|
|
}
|
|
|
|
[[nodiscard]] const CVector3f& operator[](size_t i) const {
|
|
assert(i < m.size());
|
|
return m[i];
|
|
}
|
|
|
|
[[nodiscard]] CMatrix3f orthonormalized() const {
|
|
CMatrix3f ret;
|
|
ret[0] = m[0].normalized();
|
|
ret[2] = ret[0].cross(m[1]);
|
|
ret[2].normalize();
|
|
ret[1] = ret[2].cross(ret[0]);
|
|
return ret;
|
|
}
|
|
|
|
[[nodiscard]] bool operator==(const CMatrix3f& other) const {
|
|
return m[0] == other.m[0] && m[1] == other.m[1] && m[2] == other.m[2];
|
|
}
|
|
|
|
[[nodiscard]] bool operator!=(const CMatrix3f& other) const { return !operator==(other); }
|
|
|
|
void transpose();
|
|
|
|
[[nodiscard]] CMatrix3f transposed() const;
|
|
|
|
void invert() { *this = inverted(); }
|
|
|
|
[[nodiscard]] CMatrix3f inverted() const;
|
|
|
|
void addScaledMatrix(const CMatrix3f& other, float scale) {
|
|
CVector3f scaleVec(scale);
|
|
m[0] += other.m[0] * scaleVec;
|
|
m[1] += other.m[1] * scaleVec;
|
|
m[2] += other.m[2] * scaleVec;
|
|
}
|
|
|
|
[[nodiscard]] static CMatrix3f RotateX(float theta) {
|
|
float sinT = std::sin(theta);
|
|
float cosT = std::cos(theta);
|
|
return CMatrix3f(simd<float>{1.f, 0.f, 0.f, 0.f}, simd<float>{0.f, cosT, sinT, 0.f},
|
|
simd<float>{0.f, -sinT, cosT, 0.f});
|
|
}
|
|
|
|
[[nodiscard]] static CMatrix3f RotateY(float theta) {
|
|
float sinT = std::sin(theta);
|
|
float cosT = std::cos(theta);
|
|
return CMatrix3f(simd<float>{cosT, 0.f, -sinT, 0.f}, simd<float>{0.f, 1.f, 0.f, 0.f},
|
|
simd<float>{sinT, 0.f, cosT, 0.f});
|
|
}
|
|
|
|
[[nodiscard]] static CMatrix3f RotateZ(float theta) {
|
|
float sinT = std::sin(theta);
|
|
float cosT = std::cos(theta);
|
|
return CMatrix3f(simd<float>{cosT, sinT, 0.f, 0.f}, simd<float>{-sinT, cosT, 0.f, 0.f},
|
|
simd<float>{0.f, 0.f, 1.f, 0.f});
|
|
}
|
|
|
|
[[nodiscard]] float determinant() const {
|
|
return m[1][0] * (m[2][1] * m[0][2] - m[0][1] * m[2][2]) + m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]) +
|
|
m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
|
|
}
|
|
|
|
std::array<CVector3f, 3> m;
|
|
};
|
|
|
|
[[nodiscard]] inline CMatrix3f operator*(const CMatrix3f& lhs, const CMatrix3f& rhs) {
|
|
std::array<simd<float>, 3> v;
|
|
for (size_t i = 0; i < v.size(); ++i) {
|
|
v[i] = lhs.m[0].mSimd * rhs[i].mSimd.shuffle<0, 0, 0, 0>() + lhs.m[1].mSimd * rhs[i].mSimd.shuffle<1, 1, 1, 1>() +
|
|
lhs.m[2].mSimd * rhs[i].mSimd.shuffle<2, 2, 2, 2>();
|
|
}
|
|
return CMatrix3f(v[0], v[1], v[2]);
|
|
}
|
|
} // namespace zeus
|