zeus/include/CVector2f.hpp

369 lines
8.7 KiB
C++

#ifndef CVECTOR2f_HPP
#define CVECTOR2f_HPP
#include "Global.hpp"
#include "Math.hpp"
#include "TVectorUnion.hpp"
#if ZE_ATHENA_TYPES
#include <Athena/IStreamReader.hpp>
#endif
#include <math.h>
#include <assert.h>
namespace Zeus
{
class alignas(16) CVector2f
{
public:
ZE_DECLARE_ALIGNED_ALLOCATOR();
inline CVector2f() {zeroOut();}
#if __SSE__
CVector2f(const __m128& mVec128) : mVec128(mVec128) {v[2] = 0.0f; v[3] = 0.0f;}
#endif
#if ZE_ATHENA_TYPES
CVector2f(const atVec2f& vec)
#if __SSE__
: mVec128(vec.mVec128){}
#else
{
x = vec.vec[0], y = vec.vec[1], v[2] = 0.0f, v[3] = 0.0f;
}
#endif
#endif
CVector2f(float xy) {splat(xy);}
CVector2f(float x, float y) {v[0] = x; v[1] = y; v[2] = 0; v[3] = 0.0;}
#if ZE_ATHENA_TYPES
CVector2f(Athena::io::IStreamReader& input)
{
x = input.readFloat();
y = input.readFloat();
v[2] = 0.0f;
v[3] = 0.0f;
}
#endif
inline bool operator ==(const CVector2f& rhs) const
{return (x == rhs.x && y == rhs.y);}
inline bool operator !=(const CVector2f& rhs) const
{return !(*this == rhs);}
inline bool operator <(const CVector2f& rhs) const
{
#if __SSE__
TVectorUnion vec;
vec.mVec128 = _mm_cmplt_ps(mVec128, rhs.mVec128);
return (vec.v[0] != 0 || vec.v[1] != 0);
#else
return (x < rhs.x || y < rhs.y);
#endif
}
inline bool operator <=(const CVector2f& rhs) const
{
#if __SSE__
TVectorUnion vec;
vec.mVec128 = _mm_cmple_ps(mVec128, rhs.mVec128);
return (vec.v[0] != 0 || vec.v[1] != 0);
#else
return (x <= rhs.x || y <= rhs.y);
#endif
}
inline bool operator >(const CVector2f& rhs) const
{
#if __SSE__
TVectorUnion vec;
vec.mVec128 = _mm_cmpgt_ps(mVec128, rhs.mVec128);
return (vec.v[0] != 0 || vec.v[1] != 0);
#else
return (x > rhs.x || y > rhs.y);
#endif
}
inline bool operator >=(const CVector2f& rhs) const
{
#if __SSE__
TVectorUnion vec;
vec.mVec128 = _mm_cmpge_ps(mVec128, rhs.mVec128);
return (vec.v[0] != 0 || vec.v[1] != 0);
#else
return (x >= rhs.x || y >= rhs.y);
#endif
}
inline CVector2f operator+(const CVector2f& rhs) const
{
#if __SSE__
return CVector2f(_mm_add_ps(mVec128, rhs.mVec128));
#else
return CVector2f(x + rhs.x, y + rhs.y);
#endif
}
inline CVector2f operator-(const CVector2f& rhs) const
{
#if __SSE__
return CVector2f(_mm_sub_ps(mVec128, rhs.mVec128));
#else
return CVector2f(x - rhs.x, y - rhs.y);
#endif
}
inline CVector2f operator-() const
{
#if __SSE__
return CVector2f(_mm_sub_ps(_mm_xor_ps(mVec128, mVec128), mVec128));
#else
return CVector2f(-x, -y);
#endif
}
inline CVector2f operator*(const CVector2f& rhs) const
{
#if __SSE__
return CVector2f(_mm_mul_ps(mVec128, rhs.mVec128));
#else
return CVector2f(x * rhs.x, y * rhs.y);
#endif
}
inline CVector2f operator/(const CVector2f& rhs) const
{
#if __SSE__
return CVector2f(_mm_div_ps(mVec128, rhs.mVec128));
#else
return CVector2f(x / rhs.x, y / rhs.y);
#endif
}
inline CVector2f operator+(float val) const
{
#if __SSE__
TVectorUnion splat = {{val, val, 0.0, 0.0}};
return CVector2f(_mm_add_ps(mVec128, splat.mVec128));
#else
return CVector2f(x + val, y + val);
#endif
}
inline CVector2f operator-(float val) const
{
#if __SSE__
TVectorUnion splat = {{val, val, 0.0, 0.0}};
return CVector2f(_mm_sub_ps(mVec128, splat.mVec128));
#else
return CVector2f(x - val, y - val);
#endif
}
inline CVector2f operator*(float val) const
{
#if __SSE__
TVectorUnion splat = {{val, val, 0.0, 0.0}};
return CVector2f(_mm_mul_ps(mVec128, splat.mVec128));
#else
return CVector2f(x * val, y * val);
#endif
}
inline CVector2f operator/(float val) const
{
#if __SSE__
TVectorUnion splat = {{val, val, val, 0.0}};
return CVector2f(_mm_div_ps(mVec128, splat.mVec128));
#else
return CVector2f(x / val, y / val);
#endif
}
inline const CVector2f& operator +=(const CVector2f& rhs)
{
#if __SSE__
mVec128 = _mm_add_ps(mVec128, rhs.mVec128);
#else
x += rhs.x; y += rhs.y;
#endif
return *this;
}
inline const CVector2f& operator -=(const CVector2f& rhs)
{
#if __SSE__
mVec128 = _mm_sub_ps(mVec128, rhs.mVec128);
#else
x -= rhs.x; y -= rhs.y;
#endif
return *this;
}
inline const CVector2f& operator *=(const CVector2f& rhs)
{
#if __SSE__
mVec128 = _mm_mul_ps(mVec128, rhs.mVec128);
#else
x *= rhs.x; y *= rhs.y;
#endif
return *this;
}
inline const CVector2f& operator /=(const CVector2f& rhs)
{
#if __SSE__
mVec128 = _mm_div_ps(mVec128, rhs.mVec128);
#else
x /= rhs.x; y /= rhs.y;
#endif
return *this;
}
inline void normalize()
{
float mag = magnitude();
mag = 1.0 / mag;
*this *= mag;
}
inline CVector2f normalized() const
{
float mag = magnitude();
mag = 1.0 / mag;
return *this * mag;
}
inline float cross(const CVector2f& rhs) const
{
return (x * rhs.y) - (y * rhs.x);
}
inline float dot(const CVector2f& rhs) const
{
#if __SSE__
TVectorUnion result;
#if __SSE4_1__
if (cpuFeatures().SSE41 || cpuFeatures().SSE42)
{
result.mVec128 = _mm_dp_ps(mVec128, rhs.mVec128, 0x31);
return result.v[0];
}
#endif
result.mVec128 = _mm_mul_ps(mVec128, rhs.mVec128);
return result.v[0] + result.v[1];
#else
return (x * rhs.x) + (y * rhs.y);
#endif
}
inline float magSquared() const
{
#if __SSE__
TVectorUnion result;
#if __SSE4_1__ || __SSE4_2__
if (cpuFeatures().SSE41 || cpuFeatures().SSE42)
{
result.mVec128 = _mm_dp_ps(mVec128, mVec128, 0x31);
return result.v[0];
}
#endif
result.mVec128 = _mm_mul_ps(mVec128, mVec128);
return result.v[0] + result.v[1];
#else
return x*x + y*y;
#endif
}
inline float magnitude() const
{ return Math::sqrtF(magSquared()); }
inline void zeroOut()
{
#if __SSE__
mVec128 = _mm_xor_ps(mVec128, mVec128);
#else
v[0] = 0.0; v[1] = 0.0; v[2] = 0.0; v[3] = 0.0;
#endif
}
inline void splat(float xy)
{
#if __SSE__
TVectorUnion splat = {{xy, xy, 0.0f, 0.0f}};
mVec128 = splat.mVec128;
#else
v[0] = xy; v[1] = xy; v[2] = 0.0f; v[3] = 0.0f;
#endif
}
static float getAngleDiff(const CVector2f& a, const CVector2f& b);
static inline CVector2f lerp(const CVector2f& a, const CVector2f& b, float t)
{
return (a + (b - a) * t);
}
static inline CVector2f nlerp(const CVector2f& a, const CVector2f& b, float t)
{
return lerp(a, b, t).normalized();
}
static CVector2f slerp(const CVector2f& a, const CVector2f& b, float t);
inline bool canBeNormalized() const
{
const float epsilon = 1.1920929e-7f;
if (fabs(x) >= epsilon || fabs(y) >= epsilon)
return true;
return false;
}
inline bool isNormalized() const
{ return !canBeNormalized(); }
inline bool isZero() const
{ return magSquared() <= 1.1920929e-7f; }
inline float& operator[](size_t idx) {return (&x)[idx];}
inline const float& operator[](size_t idx) const {return (&x)[idx];}
union
{
struct
{
float x, y;
};
float v[4];
#if __SSE__
__m128 mVec128;
#endif
};
static const CVector2f skOne;
static const CVector2f skNegOne;
static const CVector2f skZero;
};
static inline CVector2f operator+(float lhs, const CVector2f& rhs)
{
#if __SSE__
TVectorUnion splat = {{lhs, lhs, 0.0, 0.0}};
return CVector2f(_mm_add_ps(splat.mVec128, rhs.mVec128));
#else
return CVector2f(lhs + rhs.x, lhs + rhs.y);
#endif
}
static inline CVector2f operator-(float lhs, const CVector2f& rhs)
{
#if __SSE__
TVectorUnion splat = {{lhs, lhs, 0.0, 0.0}};
return CVector2f(_mm_sub_ps(splat.mVec128, rhs.mVec128));
#else
return CVector2f(lhs - rhs.x, lhs - rhs.y);
#endif
}
static inline CVector2f operator*(float lhs, const CVector2f& rhs)
{
#if __SSE__
TVectorUnion splat = {{lhs, lhs, 0.0, 0.0}};
return CVector2f(_mm_mul_ps(splat.mVec128, rhs.mVec128));
#else
return CVector2f(lhs * rhs.x, lhs * rhs.y);
#endif
}
static inline CVector2f operator/(float lhs, const CVector2f& rhs)
{
#if __SSE__
TVectorUnion splat = {{lhs, lhs, 0.0, 0.0}};
return CVector2f(_mm_div_ps(splat.mVec128, rhs.mVec128));
#else
return CVector2f(lhs / rhs.x, lhs / rhs.y);
#endif
}
}
#endif // CVECTOR2F_HPP