zeus/include/Math.hpp

116 lines
4.4 KiB
C++

#ifndef MATH_HPP
#define MATH_HPP
#undef min
#undef max
#ifndef NOMINMAX
#define NOMINMAX 1
#endif
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES 1
#endif
#include <math.h>
#include <algorithm>
namespace Zeus
{
struct CPUInfo
{
const char cpuBrand [32] = {0};
const char cpuVendor[32] = {0};
const bool isIntel = false;
const bool SSE1 = false;
const bool SSE2 = false;
const bool SSE3 = false;
const bool SSSE3 = false;
const bool SSE41 = false;
const bool SSE42 = false;
const bool SSE4a = false;
const bool AESNI = false;
};
/**
* Detects CPU capabilities and returns true if SSE4.1 or SSE4.2 is available
*/
void detectCPU();
const CPUInfo& cpuFeatures();
class CVector3f;
class CTransform;
namespace Math
{
template<typename T>
inline T min(T a, T b) { return a < b ? a : b; }
template<typename T>
inline T max(T a, T b) { return a > b ? a : b; }
template<typename T>
inline T clamp(T a, T val, T b) {return max<T>(a, min<T>(b, val));}
inline float radToDeg(float rad) {return rad * 180.f / M_PI;}
inline float degToRad(float deg) {return deg * M_PI / 180;}
extern const CVector3f kRadToDegVec;
extern const CVector3f kDegToRadVec;
CVector3f radToDeg(const CVector3f& rad);
CVector3f degToRad(const CVector3f& deg);
extern const CVector3f kUpVec;
CTransform lookAt(const CVector3f& pos, const CVector3f& lookPos, const CVector3f& up=kUpVec);
CVector3f baryToWorld(const CVector3f& p0, const CVector3f& p1, const CVector3f& p2, const CVector3f& bary);
CVector3f getBezierPoint(const CVector3f& a, const CVector3f& b,
const CVector3f& c, const CVector3f& d, float t);
float getCatmullRomSplinePoint(float a, float b,
float c, float d, float t);
CVector3f getCatmullRomSplinePoint(const CVector3f& a, const CVector3f& b,
const CVector3f& c, const CVector3f& d, float t);
CVector3f getRoundCatmullRomSplinePoint(const CVector3f& a, const CVector3f& b,
const CVector3f& c, const CVector3f& d, float t);
inline float slowCosineR(float val) { return float(cos(val)); }
inline float slowSineR(float val) { return float(sin(val)); }
inline float slowTangentR(float val) { return float(tan(val)); }
inline float arcSineR(float val) { return float(asin(val)); }
inline float arcTangentR(float val) { return float(atan(val)); }
inline float arcCosineR(float val) { return float(acos(val)); }
inline float powF(float a, float b) { return float(exp(b * log(a))); }
inline float floorF(float val) { return float(floor(val)); }
inline float ceilingF(float val)
{
float tmp = floorF(val);
return (tmp == val ? tmp : tmp + 1.0);
}
// Since round(double) doesn't exist in some <cmath> implementations
// we'll define our own
inline double round(double val) { return (val < 0.0 ? ceilingF(val - 0.5) : floorF(val + 0.5)); }
inline double powD(float a, float b) { return exp(b * log(a)); }
double sqrtD(double val);
inline double invSqrtD(double val) { return 1.0 / sqrtD(val); }
inline float invSqrtF(float val) { return float(1.0 / sqrtD(val)); }
inline float sqrtF(float val) { return float(sqrtD(val)); }
float fastArcCosR(float val);
float fastCosR(float val);
float fastSinR(float val);
int floorPowerOfTwo(int x);
int ceilingPowerOfTwo(int x);
template <class T>
inline int PopCount(T x)
{
using U = std::make_unsigned_t<std::conditional_t<std::is_enum<T>::value, std::underlying_type_t<T>, T>>;
U cx = U(x);
const U m1 = U(0x5555555555555555); //binary: 0101...
const U m2 = U(0x3333333333333333); //binary: 00110011..
const U m4 = U(0x0f0f0f0f0f0f0f0f); //binary: 4 zeros, 4 ones ...
const U h01 = U(0x0101010101010101); //the sum of 256 to the power of 0,1,2,3...
cx -= (cx >> 1) & m1; //put count of each 2 bits into those 2 bits
cx = (cx & m2) + ((cx >> 2) & m2); //put count of each 4 bits into those 4 bits
cx = (cx + (cx >> 4)) & m4; //put count of each 8 bits into those 8 bits
return (cx * h01) >> ((sizeof(U)-1)*8); //returns left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...
}
}
}
#endif // MATH_HPP