prime/include/rstl/vector.hpp

132 lines
3.6 KiB
C++
Raw Normal View History

#ifndef _RSTL_VECTOR_HPP
#define _RSTL_VECTOR_HPP
#include "types.h"
#include "rstl/pointer_iterator.hpp"
#include "rstl/rmemory_allocator.hpp"
namespace rstl {
// template < typename T, typename Alloc >
// struct allocator_auto_ptr {
// allocator_auto_ptr(T* ptr, Alloc* alloc) : ptr(ptr) {}
// ~allocator_auto_ptr() {
// if (ptr != nullptr) {
// Alloc::deallocate(ptr);
// ptr = nullptr;
// }
// }
// T* release() { T* v = ptr; ptr = nullptr; return v; }
// private:
// T* ptr;
// };
template < typename T, typename Alloc = rmemory_allocator >
class vector {
Alloc x0_allocator;
int x4_count;
int x8_capacity;
T* xc_items;
public:
typedef pointer_iterator< T, vector< T, Alloc >, Alloc > iterator;
typedef const_pointer_iterator< T, vector< T, Alloc >, Alloc > const_iterator;
inline iterator begin() { return iterator(xc_items); }
inline const_iterator begin() const { return const_iterator(xc_items); }
inline iterator end() { return iterator(xc_items + x4_count); }
inline const_iterator end() const { return const_iterator(xc_items + x4_count); }
inline vector() : x4_count(0), x8_capacity(0), xc_items(NULL) {}
inline vector(int count) : x4_count(0), x8_capacity(0), xc_items(0) { reserve(count); }
vector(const vector& other) {
x4_count = other.x4_count;
x8_capacity = other.x8_capacity;
if (other.x4_count == 0 && other.x8_capacity == 0) {
xc_items = NULL;
} else {
int sz = x8_capacity * sizeof(T);
if (sz == 0) {
xc_items = NULL;
} else {
x0_allocator.allocate(xc_items, sz);
}
// rstl::uninitialized_copy_n(other.data(), x4_count, data());
rstl::uninitialized_copy_n(data(), other.data(), x4_count);
}
}
~vector() {
rstl::destroy(begin(), end());
x0_allocator.deallocate(xc_items);
}
void reserve(int size);
void push_back(const T& in) {
if (x4_count >= x8_capacity) {
reserve(x8_capacity != 0 ? x8_capacity * 2 : 4);
}
iterator out = begin() + x4_count;
out = in;
++x4_count;
}
vector& operator=(const vector& other) {
if (this == &other)
return *this;
clear();
if (other.size() == 0) {
x0_allocator.deallocate(xc_items);
x4_count = 0;
x8_capacity = 0;
xc_items = nullptr;
} else {
reserve(other.size());
rstl::uninitialized_copy(data(), other.data(), other.data() + other.size());
x4_count = other.x4_count;
}
return *this;
}
void clear() {
rstl::destroy(begin(), end());
x4_count = 0;
}
inline T* data() { return xc_items; }
inline const T* data() const { return xc_items; }
inline int size() const { return x4_count; }
inline int capacity() const { return x8_capacity; }
inline T& front() { return xc_items[0]; }
inline const T& front() const { return xc_items[0]; }
inline T& back() { return xc_items[x4_count - 1]; }
inline const T& back() const { return xc_items[x4_count - 1]; }
inline T& operator[](int idx) { return xc_items[idx]; }
inline const T& operator[](int idx) const { return xc_items[idx]; }
};
template < typename T, typename Alloc >
void vector< T, Alloc >::reserve(int size) {
if (size <= x8_capacity)
return;
int sz = size * sizeof(T);
T* newData;
if (sz == 0) {
newData = nullptr;
} else {
x0_allocator.allocate(newData, sz);
}
rstl::uninitialized_copy(begin(), end(), newData);
rstl::destroy(xc_items, xc_items + x4_count);
x0_allocator.deallocate(xc_items);
xc_items = newData;
x8_capacity = size;
}
typedef vector< void > unk_vector;
CHECK_SIZEOF(unk_vector, 0x10)
} // namespace rstl
#endif