#ifndef _RSTL_RESERVED_VECTOR_HPP #define _RSTL_RESERVED_VECTOR_HPP #include "types.h" #include "rstl/construct.hpp" #include "rstl/pointer_iterator.hpp" namespace rstl { template < typename T, size_t N > class reserved_vector { size_t x0_count; u8 x4_data[N * sizeof(T)]; public: typedef pointer_iterator< T, reserved_vector< T, N >, void > iterator; typedef const_pointer_iterator< T, reserved_vector< T, N >, void > const_iterator; inline iterator begin() { return iterator(data()); } inline const_iterator begin() const { return const_iterator(data()); } inline iterator end() { return iterator(data() + x0_count); } inline const_iterator end() const { return const_iterator(data() + x0_count); } reserved_vector() : x0_count(0) {} reserved_vector(const T& value) : x0_count(N) { rstl::uninitialized_fill_n(data(), N, value); } reserved_vector(const reserved_vector& other) { x0_count = other.size(); rstl::uninitialized_copy_n(data(), other.data(), size()); } reserved_vector& operator=(const reserved_vector& other) { if (this != &other) { clear(); rstl::uninitialized_copy_2(other.data(), data(), other.data() + other.size()); x0_count = other.x0_count; } return *this; } void clear() { for (size_t i = 0; i < x0_count; ++i) { rstl::destroy(&data()[i]); } x0_count = 0; } ~reserved_vector() { clear(); } void push_back(const T& in) { if (x0_count < N) { iterator out = begin() + x0_count; out = in; ++x0_count; } } inline T* data() { return reinterpret_cast< T* >(x4_data); } inline const T* data() const { return reinterpret_cast< const T* >(x4_data); } inline size_t size() const { return x0_count; } inline size_t capacity() const { return N; } inline T& front() { return data()[0]; } inline const T& front() const { return data()[0]; } inline T& back() { return data()[x0_count - 1]; } inline const T& back() const { return data()[x0_count - 1]; } inline T& operator[](size_t idx) { return data()[idx]; } inline const T& operator[](size_t idx) const { return data()[idx]; } }; } // namespace rstl #endif