#ifndef _RSTL_VECTOR #define _RSTL_VECTOR #include "types.h" #include "rstl/pointer_iterator.hpp" #include "rstl/rmemory_allocator.hpp" class CInputStream; namespace rstl { // template < typename T, typename Alloc > // struct allocator_auto_ptr { // allocator_auto_ptr(T* ptr, Alloc* alloc) : ptr(ptr) {} // ~allocator_auto_ptr() { // if (ptr != nullptr) { // Alloc::deallocate(ptr); // ptr = nullptr; // } // } // T* release() { T* v = ptr; ptr = nullptr; return v; } // private: // T* ptr; // }; template < typename T, typename Alloc = rmemory_allocator > class vector { protected: Alloc x0_allocator; int x4_count; int x8_capacity; T* xc_items; public: typedef pointer_iterator< T, vector< T, Alloc >, Alloc > iterator; typedef const_pointer_iterator< T, vector< T, Alloc >, Alloc > const_iterator; typedef T value_type; iterator begin() { return iterator(xc_items); } const_iterator begin() const { return const_iterator(xc_items); } iterator end() { return iterator(xc_items + x4_count); } const_iterator end() const { return const_iterator(xc_items + x4_count); } vector(const Alloc& alloc = Alloc()) : x0_allocator(alloc), x4_count(0), x8_capacity(0), xc_items(nullptr) {} vector(int count) : x4_count(0), x8_capacity(0), xc_items(0) { reserve(count); } vector(int count, const T& v) : x4_count(count), x8_capacity(count) { x0_allocator.allocate(xc_items, x4_count); uninitialized_fill_n(xc_items, count, v); } vector(int count, const T& v, const Alloc& alloc); vector(const vector& other) : x4_count(other.x4_count), x8_capacity(other.x8_capacity) { if (other.x4_count == 0 && other.x8_capacity == 0) { xc_items = nullptr; } else { x0_allocator.allocate(xc_items, x8_capacity); uninitialized_copy_n(other.xc_items, x4_count, xc_items); } } vector(CInputStream& in, const Alloc& alloc = Alloc()); ~vector() { destroy(begin(), end()); x0_allocator.deallocate(xc_items); } void reserve(int size); void resize(int size, const T& in); iterator insert(iterator it, const T& value); template < typename from_iterator > iterator insert(iterator it, from_iterator begin, from_iterator end); iterator erase(iterator it); iterator erase(iterator first, iterator last); void push_back(const T& in) { if (x4_count >= x8_capacity) { reserve(x8_capacity != 0 ? x8_capacity * 2 : 4); } rstl::construct(xc_items + x4_count, in); ++x4_count; } vector& operator=(const vector& other); void clear() { destroy(begin(), end()); x4_count = 0; } T* data() { return xc_items; } const T* data() const { return xc_items; } int size() const { return x4_count; } bool empty() const { return x4_count == 0; } int capacity() const { return x8_capacity; } T& at(int idx) { return xc_items[idx]; } const T& at(int idx) const { return xc_items[idx]; } T& front() { return at(0); } const T& front() const { return at(0); } T& back() { return at(x4_count - 1); } const T& back() const { return at(x4_count - 1); } T& operator[](int idx) { return xc_items[idx]; } const T& operator[](int idx) const { return xc_items[idx]; } protected: template < typename In > iterator insert_into(iterator at, int n, In in); }; template < typename T, typename Alloc > void vector< T, Alloc >::resize(int size, const T& in) { if (x4_count != size) { if (size > x4_count) { reserve(size); uninitialized_fill_n(xc_items + x4_count, size - x4_count, in); } else { destroy(begin() + size, end()); } x4_count = size; } } template < typename T, typename Alloc > void vector< T, Alloc >::reserve(int newSize) { if (newSize <= x8_capacity) { return; } T* newData; x0_allocator.allocate(newData, newSize); uninitialized_copy(begin(), end(), newData); destroy(xc_items, xc_items + x4_count); x0_allocator.deallocate(xc_items); xc_items = newData; x8_capacity = newSize; } template < typename T, typename Alloc > typename vector< T, Alloc >::iterator vector< T, Alloc >::insert(iterator it, const T& value) { typename iterator::difference_type diff = it - begin(); // distance(begin(), it); // // TODO: implement // const_counting_iterator< T > in(&value, 0); // insert_into(it, 1, in); return begin() + diff; } template < typename T, typename Alloc > template < typename from_iterator > typename vector< T, Alloc >::iterator vector< T, Alloc >::insert(iterator it, from_iterator begin, from_iterator end) { return insert_into(it, rstl::distance(begin, end), begin); } template < typename T, typename Alloc > template < typename In > typename vector< T, Alloc >::iterator vector< T, Alloc >::insert_into(iterator at, int n, In in) { // TODO: correct // An implementation can be found in CAnimationDatabaseGame.o int newCount = x4_count + n; if (newCount <= x8_capacity) { int diffFromAt = at - begin(); int diff = x4_count - diffFromAt - 1; for (int i = diff; 0 <= diff; --i) { construct(xc_items + (diffFromAt + i), xc_items[i]); destroy(data() + i); } uninitialized_copy_n(in, n, begin() + diffFromAt); x4_count += n; } else { int newCapacity = x8_capacity != 0 ? x8_capacity * 2 : 4; for (; newCapacity < newCount; newCapacity *= 2) ; T* newData; x0_allocator.allocate(newData, newCapacity); int diffFromAt = at - begin(); uninitialized_copy_n(begin(), diffFromAt, newData); uninitialized_copy_n(in, n, newData + diffFromAt); uninitialized_copy_n(begin() + diffFromAt, x4_count - diffFromAt, newData + diffFromAt + n); destroy(xc_items, xc_items + x4_count); x0_allocator.deallocate(xc_items); xc_items = newData; x8_capacity = newCapacity; x4_count += n; } } template < typename T, typename Alloc > vector< T, Alloc >& vector< T, Alloc >::operator=(const vector< T, Alloc >& other) { if (this == &other) return *this; clear(); if (other.size() == 0) { x0_allocator.deallocate(xc_items); x4_count = 0; x8_capacity = 0; xc_items = nullptr; } else { reserve(other.size()); uninitialized_copy(other.data(), other.data() + other.size(), data()); x4_count = other.x4_count; } return *this; } template < typename T, typename Alloc > typename vector< T, Alloc >::iterator vector< T, Alloc >::erase(iterator it) { return erase(it, it + 1); } template < typename T, typename Alloc > typename vector< T, Alloc >::iterator vector< T, Alloc >::erase(iterator first, iterator last) { destroy(first, last); iterator start = begin(); int newCount = rstl::distance(first, start); iterator moved = start + newCount; for (iterator it = last; it != end(); ++it) { construct(&*moved, *it); ++moved; ++newCount; } x4_count = newCount; return first; } typedef vector< void > unk_vector; CHECK_SIZEOF(unk_vector, 0x10) } // namespace rstl #endif // _RSTL_VECTOR